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For Darja, Luka, and Rebecca,

and my parents Alfred and Christina.

All T Ever Really Need to Know I Learned in Kindergarten.

Most of what I really need to know about how to live, and what to do, and how to
be, I learned in Kindergarten. Wisdom was not at the top of the graduate school

mountain, but there in the sandpile at Sunday School.
These are the things I learned:
Share everything.
Play fair.
Don’t hit people.
Put things back where you found them.
Clean up your own mess.
Don’t take things that aren’t yours.
Say you're sorry when you hurt somebody.
Wash your hands before you eat.
Flush.
Warm cookies and cold milk are good for you.

Live a balanced life - learn some and think some and draw and paint and sing and dance

and play and work every day some.
Take a nap every afternoon.
When you go out into the world, watch out for traffic, hold hands, and stick together.
Robert Fulghum (1993, pp. 6-7)
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Abstract

“Hard sciences” like physics and geometry define how to build models of spatial
reality into a geographical information system. This results in systems lacking
user friendliness and suffering from low acceptance because humans conceptualize
spatial reality differently. There is a need for formal models of human concep-
tualizations of the world that are based on common sense respectively naive
conceptualizations.

Naive geography studies formal models of the commonsense geographic world.
The vision of naive geography is a set of theories that helps to build geographic
information systems that can be used without major training by new users. Suc-
cess in finding this set of theories has been limited as a common problem is to
find an axiomatization for the formal models.

The present research formalizes human spatial conceptualizations using al-
gebraic specifications. The theories are based on a set of sorts, operations and
axioms. I hypothesize that the change of spatial theories can be modeled by an
adaptation of axioms.

Selected examples of developmental psychology serve as an input for building
a framework for the acquisition of spatial theories. The theory theory of cognitive
development motivated sequences of spatial theories presented in this work. For
three sequence types of theories theory building mechanisms are identified. The

adaptation of theories is based on:

1. Specialization considers a new influential parameter. A theory is special-
ized by constraining it through an axiom. The axioms constrain the theory
to a special set of sorts and operations. The more axioms are added the

fewer sorts can be described by the specialized theory.

2. Generalization is an abstraction step. A theory is found to be a special

case of a more general theory. The general theory is obtained by deleting

v



an axiom of the specialized theory. Other special theories can be derived
from a generalized theory by adding axioms. The derived and coexisting

theories are special cases of the generalized theory.

3. Dynamic Weighting is a mechanism to assign importance to a theory.
Theories with higher weights are favored over those with lower weights.
Belief revision is the result of the dynamic weighting mechanism that assigns

a higher weight to a previously low weighted theory.

The contribution of this thesis is a formal description of spatial theories as found
with children. The novelty is in the formal description of the transition from
one theory to another. The formal model describes the spatial theories and their
change in a framework using algebraic specifications.

The algebraic specifications have been implemented in a purely functional
programming language, which makes them executable. The framework allows
to simulate the developed change mechanism in accordance with the empirical
studies carried out in developmental psychology. It takes abstract perceptions as
input, evaluates a set of given theories and responds about the appropriateness of
the theories in a given environment. Frequent mismatches between observations
in the environment and expectations generated by the theories will elicit changes
in the algebraic structure.

In conclusion a set of mechanisms based on three theory building operations
is shown to be theoretically capable to construct sequences of ever improved
commonsense theories of space. Future work will address the automation of
the mechanism in a multi agent environment. The influence of communication

processes on spatial concept formation is still an open question of research.

Keywords

spatial cognition, naive geography, ontologies, algebraic modeling, conceptual

change



Kurzfassung

Geoinformationssysteme sollen Menschen helfen, rdumliche Entscheidungen ra-
scher zu treffen. Die Systeme werden aber ohne die Beriicksichtigung naiv kog-
nitiver Theorien implementiert. Der Grund ist ein Mangel an formalen Beschrei-
bungen alltéglicher kognitiver Theorien zur raumlichen Entscheidungsfindung.

Die vorliegende Dissertation ist durch empirische Studien zur Raumkognition
von Kindern motiviert. Ausgangspunkt ist die Theorie Theorie der kognitiven
Entwicklung. Die Theorie Theorie besagt, dass Kinder wie Wissenschaftler The-
orien iiber die sie umgebende Umwelt bilden. Die Theorien entstehen durch
Beobachtung der Umwelt und dienen der Prédiktion von Phdnomenen. Immer
wenn Pridiktion und Beobachtung nicht in Ubereinstimmung gebracht werden
konnen, wird ein Theoriewechsel ausgelost.

Der Beitrag dieser Dissertation ist eine formale Beschreibung naiv rdumlicher
Theorien in Anlehnung an die Theorie Theorie. Neu ist die Beschreibung eines
Revisionsmechanismus von einer Theorie zur folgenden. FEin formales Modell
beschreibt die réumlichen Theorien und den Revisionsmechanismus mittels eines
algebraischen Ansatzes. Fiir drei Sequenzen rdumlicher Theorien wurden drei

Mechanismen zum algebraischen Theoriewechsel identifiziert:

1. Spezialisierung beriicksichtigt den Einfluss eines neuen perzeptiven Pa-
rameters. Eine Theorie wird spezialisiert durch Hinzufiigen eines Axioms.
Die Axiome beschrinken die Theorie auf eine spezielle Menge von Ele-
menten. Je mehr Axiome hinzugefiigt werden, desto weniger Elemente

konnen durch die spezialisierte Theorie beschrieben werden.

2. Generalisierung ist ein Abstraktionsschritt. Fine Theorie kann durch
mehrmaliges Hinzufiigen von Axiomen iiberspezialisiert werden. Eine iiber-
spezialisierte Theorie erhélt in Folge durch Beobachtung der Umwelt ab-

wechselnd Bestéatigung und Widerspruch. Die iiberspezialisierte Theorie

vi



vil

kann durch Entfernen eines Axioms in eine generalisierte Theorie iiberge-
fiihrt werden. Die generalisierte Theorie kann durch Hinzufiigen von Ax-
iomen wieder in andere spezialisierte Theorien iibergefiihrt werden. Diese
abgeleiteten, nebeneinander existierenden Theorien sind Spezialfille einer

generalisierten Theorie.

3. Dynamische Gewichtung ist ein Mechanimus, um die Wichtigkeit einer
Theorie zu modellieren. Das Gewicht einer Theorie ist ein Mass fiir die
Funktion der Theorie in einer Umwelt. Theorien mit hoheren Gewichten
werden Theorien mit niedrigeren Gewichten bevorzugt. Theoriewechsel re-
sultieren aus der dynamischen Zuordnung hoher Gewichte auf Theorien, die

zunéchst niedrig gewichtet waren.

Die algebraischen Spezifikationen wurden mit einer rein funktionalen Program-
miersprache implementiert und machen das vorgestellte Model ausfithrbar. Ex-
perimente der Entwicklungspsychologie kénnen mit dem Modell unter Verwen-
dung der Revisionsmechanismen simuliert werden. Als Eingabe dienen dem Mod-
ell abstrakte Perzeptionen, die anhand einer vorgegebenen Menge von Theorien
verarbeitet werden. Wiederholte Widerspriiche zwischen Beobachtungen in der
Umwelt und den von den Theorien generierten Erwartungen 16sen Theoriewechsel
in der algebraischen Struktur aus. Anhand der Simulationen konnte die Plausi-
bilitéit des Modells iiberpriift werden.

Es léasst sich der Schluss ziehen, dass Sequenzen naiv rédumlicher Theorien
durch drei Mechanismen in einem algebraischen Rahmenwerk gebildet werden
konnen. In Zukunft soll die Automatisierung des Mechanismus in einer Multi-
Agenten Umgebung erforscht werden. Die Bedeutung von Kommunikationspro-
zessen zwischen Agenten und deren Einfluss auf rdumliche Theoriesequenzen soll

untersucht werden.

SchliisselwoOrter

R#Aumliche Kognition, Naive Geographie, Entwicklungspsychologie, Ontologien,
Algebraische Modellierung, Konzeptwechsel
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Chapter 1

Introduction

Motivated by the observation of growing children this thesis proposes a model for
the revision of spatial theories. These theories are formally described by algebraic
specifications in an agent based framework. The mechanism for theory revision
is based on adding, deleting and weighting axioms. Simulations that utilize em-
pirical data of developmental psychology are carried out. The chapter introduces
the methodology used and the results expected. An outlook to applications is

given and the organization of the whole thesis is explained.

1.1 Motivation of the current work

Spatial representations in contemporary geographic information systems are based
on “hard sciences” like geometry, mathematics and physics. As a result available
geographic information systems are not widely accepted by laymen. People base
their everyday spatial reasoning on other conceptualizations.

Recent findings in developmental psychology (Baillargeon, 2004a) suggest that
already children as young as 12 months hold concepts about objects, the move-
ment of objects, gravity, inertia, occlusion, containment and many others. The
development of these conceptualizations motivated the present thesis that inves-
tigates how to formalize spatial concepts as found with children. The focus of
the thesis is put on spatial aspects of conceptualizations and their change.

Some developmental psychologists conjecture that infants learn about the
world by forming and revising theories (Gopnik et al., 1999). These are not big
theories in the sense of Darwin’s theory of evolution or Einstein’s relativity theory,

but small conceptualizations of the world that are adapted in the light of new
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evidence. Ontologists would rather refer to “theoritas” to distinguish them from
fully fledged theories (Casati, 2000).

Efforts to formally describe commonsense theories led to the proposal of naive
physics (Hayes, 1978). Hayes formalized the naive understanding of solids and
liquids (Hayes, 1985). These ontologies inspired a series of other formal theories
about the commonsense world (Hobbs and Moore, 1985).

Naive geography studies formal models of the common sense geographic world.
(Mark, 1993; Egenhofer and Mark, 1995; Mark and Egenhofer, 1996). Naive
geography is a set of theories that helps to build geographic information systems
that can be used without major training by new users. Success in finding this
set of common sense theories has been limited, because a common problem is to
define axioms for the formal models.

The present thesis is a contribution to naive geography. It investigates a
theory for the formal description of spatial theory change with children. Under-
standing a theory development calculus gives an overall structural framework for
naive geography, actually a framework for naive theories of any domain.

The advantage of spatial theories is that they are based on simple observa-
tions. The theories can be described by a limited set of operations and axioms.
Empirical studies by developmental psychologists provide such data.

The mechanisms children use to develop theories are constant over lifetime.
Adults reuse what they have learned as children. I assume that the process of
spatial theory development can be compared with the bootstrapping of knowledge
in a computer. A small set of given theories is transformed into a complex
framework of interacting theories through active exploration of an environment.

The research introduces a theory driven agent that explores its environment.
It is a wrapper to a set of mechanisms for theory change. This framework will
help to understand the transition of one theory to another. Each theory stands
for a conceptual model of the agent. The research works towards a vision of
geoinformation science. A geographic information system must be capable of
integrating different conceptual models in a single formal system. The long term

aim is to treat different representations of space in a uniform way (Frank, 2001).

1.2 Hypothesis and Research Question

The goal of this thesis is a formalization of how people build mental models

about spatial phenomena. These mental models will be described as sequences of
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changing theories. Revision of a (spatial) concept becomes necessary when the
predictions generated by a theory do not fit to the according perceptions made
in an environment.

In the course of this thesis a theory of the acquisition of spatial concepts is
developed based on research in cognitive development. Learning and cognitive
development address how people build concepts about the surrounding world.
The central question of the present thesis can be stated as how to formally build
a conceptual schema of space that allows continuous revision whenever new ev-
idence brings up contradiction? The resulting model is a formal specification
towards naive geographic information systems (Egenhofer and Mark, 1995).

To formalize the mental models of spatial phenomena the tool of algebraic
specification has been chosen. Algebra allows a high level of abstraction. With a
pure functional programming language executable models can be built.

Theory revision in the terms of this thesis should be understood as adaptation,
meaning making a theory fit to observations made in an environment. The refined
hypothesis of this thesis states that a theory of space can be described by a set of
azxioms. It is possible to adapt the theory by the addition, deletion and dynamic
weighting of its axioms.

The theories under investigation are not necessarily just common sense spatial
theories of children. They endure in a revised form in adults (Karmiloff-Smith,
1992; Gopnik and Meltzoff, 1997). Here formal models about spatial conceptu-
alizations together with a mechanism of change apply equally to children and
adults. The formal study of early spatial conceptualizations will lead to the iden-
tification of elements that are vital to the design of sound geographic information

systems.

1.3 Approach and Research Design

Data of empirical experiments carried out in developmental psychology are used
to construct a model of a theory driven agent in an environment. These studies
provide prelinguistic data and present experiences of infants with table top objects
in a cognition laboratory. The interpretations of the studies have been used to
develop algebraic specifications.

Series of studies point to developmental processes in the child and thus to
theory change. In the course of the thesis a calculus of theory change based on

three mechanisms has been developed. The mechanisms have been found in the
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empirical data and are based on an adaptation of axioms. Theories are built by
either adding or deleting axioms.

The theory driven agent can hold several theories about the same phenomena
at a time. The agent evaluates the theories using a dynamic weighting mecha-
nism given observations in the environment. The importance of a theory can be
determined through its weight.

In order to build the framework of the theory driven agent in an environment
previous work has been reviewed in the area of problem solving, belief revision,
learning systems and agent theory. A calculus of theory change has been pro-
posed and implemented into an executable computational model. The model is

evaluated by the simulation of selected empirical studies.

1.3.1 Conceptual Model - Sandbox Geography

A formal theory will be provided that describes spatial theory change in a com-
putational model. The model describes how spatial beliefs change during infancy
towards adult’s naive theories of space. In order to simulate this process in a
model an artificial environment has been set up.

The theory about the acquisition of spatial concepts is worked out in a sand-
box. I am using the metaphor of a sandbox as a place for experimentation; the
laws of physics can be investigated by using very simple models. The models in
a sandbox do not last, but they can raise new insights in the little engineer’s un-
derstanding. The objects treated in a sandbox underlie a mesoscopic partitioning
(Smith and Mark, 2001), they are on human scale and they belong to categories
that geographers form, therefore Sandbox Geography.

The term geography has greek roots and comprises the description of the
earth. Before children start to describe large scale space environments they start
to describe their immediate surrounding. These are table top spaces. The current
research does not investigate geographic phenomena but table top environments.
In conformance with the theory theory I assume that the mechanisms used by
children are transferred to adults and that the models investigated in this thesis
can be transferred to geographic space environments in a later step. The formal
models provided are a basis to describe geographic phenomena and stand at the
starting point of bootstrapping process.

A theory driven agent is endowed with an initial set of theories about an envi-

ronment. The agent uses theories and observations of the environment to predict
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the outcome of spatial operations. Whenever these predictions fail to describe
spatial phenomena the agent builds new theories triggered by observations avail-
able. New theories are again tested in the environment by observation until the
agent loses interest.

The conceptual model has been worked out by the identification of spatial
processes in empirical studies of developmental psychology. Previous work in
philosophy, psychology, linguistics, geography, computer science, artificial intel-
ligence and robotics has been reviewed in order to build the model of a spatial
cognizing agent in an environment. The intention is not to provide a new theory
of learning or to build a cognitive architecture.

Sandbox Geography investigates simple spatial situations to find out how
space is structured in mental models. The mental models are described as se-
quences of changing theories. Mechanisms to revise theories from infant’s towards
adult’s conceptualizations of space are provided. The formal description of the
mental models together with mechanisms for change represent people’s beliefs,

i.e. children and adults, about space.

1.3.2 Formalization - Computational Model

The formalization of the conceptual model is carried out using algebraic specifi-
cations. The reasons to choose an algebraic approach are multiple. Firstly op-
erations and axioms can be used to describe activities. Operations on the same
sorts can be grouped in algebras. The agent based approach is based on activities
in an environment. Secondly algebras provide abstract mechanisms that can be
used to investigate the transition between different conceptualizations. Thirdly
algebraic specifications together with a functional programming language serves
as a rapid prototyping tool in several investigations in geographic information
science.

An executable model is developed using the functional programming language
Haskell. It allows the direct implementation of algebras that have been defined
in the conceptual model. The empirical studies designed and implemented can
be executed using the prototype.

The formal model helps to keep the conceptual model clean, as one has to
be very specific in setting up the model. A sound formalization depends on
the decisions which elements, objects and processes are included into the model.

The model is an abstract description of reality and contains just the elements
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necessary to support the hypothesis of the thesis.

The resulting executable formal model is a proof of concept for the theory
used. In the present thesis this is the theory theory of cognitive development
(Gopnik and Meltzoff, 1997; Gopnik et al., 1999). An important follow up step

is the testing of the formal model.

1.3.3 Testing the formal model

The testing of the formal model shows whether the spatial cognizing agent re-
flects the behavior of the subjects involved in the empirical studies carried out
in developmental psychology. Major design errors in the conceptual model can
be detected by carrying out simulations. The prototypical implementation is a
proof of concept for the designed model and verifies the stated hypothesis.

New research questions in other disciplines can be gained by the results. Miss-
ing input from the empirical studies for the spatial domain can be identified. The
computer simulation further validates the underlying theory theory of cognitive

development and is a proof for its plausibility.

1.4 Expected Results

The thesis provides a formalization of spatial concepts as found with infants to-
wards those of adults. Sequences of spatial theories are described in a computa-
tional model. The focus of the model is on the acquisition of spatial phenomena.

The thesis provides an agent based approach to spatial conceptualizations
with infants. In the center of the research there are objects in a small scale space
as found in the empirical studies of developmental psychology. The structure of
these common sense conceptualizations and the possible level of abstraction are
investigated towards mechanisms for conceptual change. The expected results

are:

e An abstract model of conceptual change that is grounded in people’s real
world experience. The aim is to provide formal theories as needed in ge-
ographical information systems. Previous work has been mostly based on
block worlds and toy space (Frank, 1998; Egenhofer and Rodriguez, 1999).
The model built in the present thesis is based on empirical studies. The
formalization relies on the interpretations of experiments given by experts,

i.e. psychologists.
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e A method to build a conceptual schema from empirical studies carried out
in developmental psychology. The derivation of axioms for a formal speci-

fication of spatial concepts is described. The following steps are necessary:

Find empirical studies describing spatial phenomena.

— Abstract processes and map them to data types and operations.

Build axioms to define the behavior of the operations.

Simulate the resulting model with a purely functional programming
language and compare the behavior of the model with the outcome of

the empirical studies.

e A transition mechanism for spatial concepts based on algebraic specifica-
tions. The thesis will show that conceptual change can be modeled using
algebraic specifications. Revised conceptualizations are obtained by adapt-
ing the axioms of an algebra. The adaptation of axioms is based on the

addition, deletion and dynamic weighting of axioms.

e An overview of state of the art empirical studies about spatial knowledge
as found with infants is provided. The selected body of research is formally
described as algebraic theories and their change. The formal theories are
a contribution to naive geography rather than being a proposal for a new

cognitive architecture.

e The present, developed theories can be formally tested and give the exper-
imenter data that can be cross checked with empirical studies. Thus it can
help to keep theories in developmental psychology “clean”, because one has
to be very specific when building a computational model. Parameters of

informal psychological descriptions are validated in a computer model.

In order to answer the research question within a limited time, several aspects
have been excluded from the investigations. To avoid misunderstandings I state

what this thesis is not about. Points that are not under investigation are:

e The thesis does not provide a new cognitive architecture. Effects due to
memorization, strength of stimuli or attention have not been considered in
the model. Conclusions about brain activities or other similarities to neural

models cannot be drawn.
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e [t is not my intention to build a model that is exclusively about children.
I assume naive theories identified with infants can be found in adults in
a revised form (Gopnik and Meltzoff, 1997; Spelke, 2000; Carey, 2004).
The presented epistemology and ontology of the agent grow incrementally,

comparable with the bootstrapping mechanism of a computer.

e The formal model does not serve as an implementation that can be directly
used in a robot or any kind of machine. Low level percepts, such as sensor
data from vision or audio devices are abstracted in data types and functions.
I deal with observations, empirical studies and physical objects as cognitive
products available. Examples for theory construction in robots are the sub-
sumption architecture by Brooks (1986) and the semantic spatial hierarchy
by Kuipers (2000).

In summary the expected results are mechanisms to build sequences of spatial
theories using an algebraic framework. The mechanisms are tested with a theory
driven agent that predicts and observes the outcome of operations on objects in a
table top environment. The model is validated by comparing the behavior of the
agent in the environment with the behavior of infants in comparable empirical

studies of developmental psychology.

1.5 Contribution of the thesis

This thesis contributes to user interfaces and interoperability in geographic infor-
mation systems. I outline how the findings of this thesis can be useful for the areas
mentioned. Firstly a case for user interfaces is discussed, then the contribution
towards system interoperability is outlined.

Children who do not yet speak do often point to objects in order to commu-
nicate with adults. This pointing paradigm has been implemented in the user
interface of a tourist information system (Irschitz, 2004). Empirical tests showed
that users readily accepted the interface without any need to learn how to use
it. The example shows how adults readily reuse what they have learned as chil-
dren (see figure 1.1) and how it can be implemented in the user interface of an

information system.
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Figure 1.1: User interface with the pointing paradigm
source: left picture: http://ilabs.washington.edu/news/press_releases/pr_brooks_11. .html, right
left pi h ilab: hi d 1 brooks_11.2002.html, righ
picture: Irschitz (2004))

This thesis contributes to the interoperability of geographic information sys-
tems. Semantic interoperability in geographic information systems is about the
transition of different mental models. Two system designers may have an inten-
sional description of a part of the world in mind and cast them into a formal
model. These models are usually different but describe the same external real-
ity. The assumption in this thesis is that the transition between different formal
models is based on the same naive concepts. The transition mechanism is con-
stant through lifetime (Gopnik and Meltzoff, 1997) that is why the results of this
research do not refer only to children but also to adults.

A formal investigation of children’s mental models of space enables to describe
formally naive spatial concepts. The formal treatment allows to find mechanisms
of change between the concepts. These mechanisms of change are necessary to
yield an automatic transition between concepts that can be used in a computer.

On the one hand future information systems will have to consider the mental
models of their users to adapt information representation in according interfaces,
on the other hand future information systems will have to merge automatically
data from different sources, that have a different conceptual background. The
present research is a step towards a deeper formal understanding of how people

generate and revise naive spatial conceptualizations.

1.6 Target Audience

The research carried out is related to several disciplines. It is targeted at re-

searchers particularly in the following areas:
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e Geoinformation scientists: A method to define the axioms of common sense
spatial theories based on the findings of developmental psychology is pre-
sented. An algebraic approach together with a functional programming
language yields executable models. The proposed theory for the acquisition

of spatial concepts is based on empirical data.

e Psychologists and cognitive scientists: Researchers can benefit from the
executable computational models that are a validation tool for informal
theories. The theories can be tested for formal correctness. Simulations are
a common research tool in psychology (Schlesinger and Parisi, 2001) and

can be utilized towards new research questions in the spatial domain.

e Artificial intelligence and robotics: Intelligent systems based on naive spa-
tial theories can be built and implemented. The systems will show behaviors
as found with infants. Humanoid robots like the infanoids (Hideki and Hi-
royuki, 2001) can benefit from the naive spatial theories. Machine learning
systems based on the provided mechanism of conceptual change can further

be investigated.

e Implementers of vision systems: Reasoners in vision systems require a set of
spatial relations for detected objects. Content based image retrieval could

be based on the naive theories of objects as found with infants.

e Computer scientists and implementers of geographic information systems:
User interfaces need to be based on people’s beliefs and expectations about
objects in space. The axioms of the common sense spatial theories can
be translated into consistency rules for user interfaces. This will lead to
systems that represent information as it is naively expected by the layman

user.

1.7 Organization of the thesis

The following chapter 2 is dedicated to definitions and the contributing disci-
plines. The notion of theory as used in the present thesis is introduced. The
theory theory of cognitive development which has given the motivation for the
research project is outlined followed by a comparison of naive with scientific
theories. Previous work on computational models of cognitive development is

reviewed.
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In chapter 3 I review work done by geographic information scientists to provide
models for naive geography. I outline how an approach that relies on empirical
data of developmental psychology can contribute to this project. I discuss the
conceptual aspects of a model for the acquisition of spatial theories and justify
the chosen modeling technique.

Chapter 4 gives place for developmental psychology. I describe studies that
have been carried out to infer from what children know and learn in the first
two years of their lives. Sequences of theories have been identified and serve to
generate a mechanism for modeling sequences of spatial theories. Spatial theories
for the occlusion, containment and support of objects are described.

In chapter 5 I develop the formal model of an agent that holds spatial theories
that can change. Different instantiations of the agent stand for different stages
of development. I describe a possible mechanism for change but concentrate
on a formal description of changing theories that are necessary to describe the
occlusion, containment and support of objects.

In chapter 6 I verify the hypothesis that qualitatively new spatial represen-
tations can be gained by the adaptation of axioms in a formal model based on
algebraic specifications. The simulations carried out with the model that has
been developed in chapter 5 are in accordance with the empirical data presented
in chapter 4.

Chapter 7 concludes this thesis. The results and major findings are summa-
rized. An outlook to future research questions is given. The complete Haskell
code for the computational model can be found in the appendix of the thesis. De-
tailed tables for the empirical studies and the derived mechanisms can be found
in the appendix. A closer look at the formal tools used throughout the thesis is
made. A short introduction to algebra is given and the functional programming

paradigm is presented.



Chapter 2

Theories and Theory Forming

The present thesis addresses the question how humans build a spatial concept.
I argue that human naive understanding of space is based on a set of theories.
These theories underlie qualitative change. On the one hand my goal is to provide
a formal description of these spatial theories on the other hand I formalize a
mechanism for the qualitative change of theories.

The research has been motivated by an account of developmental psychology,
called the theory theory. It is a theory how people, especially children build
theories of their surroundings. The theory theory proposes a strong parallelism
between common sense and scientific theory formation.

A definition of the term theory as used in the present thesis is given and the
theory theory of cognitive development is introduced. Theories in the scientific
and naive realm are discussed and epistemological concerns of theory formation
are reviewed. The chapter closes with a review of formal models of cognitive

development, outlining different approaches to theory change.

2.1 Theory Theory - Making Sense of the world

Theories are often considered to be well-substantiated explanations (Fellbaum,
1998) and therefore like Einstein’s theory of relativity or Darwin’s theory of evo-
lution. But the term theory can also stand for “a concept of a certain aspect of
the world, that is not necessarily yet verified” (Fellbaum, 1998).

Theories of the latter kind can be described by using mathematics. A mathe-
matical theory can be described by a set of formulas, i.e. the axioms of the theory.

Einstein’s theory of relativity can be written down on a few pages of paper.

12
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I assume that theories are simple in a sense that they can be described by a few
rules. Complex theories arise from the combination of several simpler theories.
The complexity of a theory does not lie in the size of a theory, e.g. the number
of operations used to describe it, but in the interaction of simpler parts.

The ontologist Roberto Casati introduces the term theorita, to distinguish
small from big theories (Casati, 2000). When I use the term theory in the present
thesis I think of small conceptualizations of space: conceptualizations that can be
described by a limited set of rules. These theories describe operations with small
sized objects that move in space. The theories are a body of rules used to predict
spatial properties of objects in an environment. The predictions generated by a
theory are also called beliefs in the present thesis.

The theory theory proposes that children form theories of the world by build-
ing and testing hypothesis. The observation of contradiction between facts and
beliefs leads to theory revision (Gopnik and Meltzoff, 1997). Gopnik and Melt-
zoff (1997) describe theories by structural, functional and dynamic features. The
structural features describe the theories themselves. Infants seem to hold abstract
theories that are different from adult theories. Through learning processes these
theories are causally connected and form new theories. Children hold theories
that lead to ontological commitments about the world, i.e. accepting a theory
leads to expectations grounded in the theory (cf. Kuhn (1962)).

The functional features explain what children do when they hold theories.
They predict actions or events, e.g infants look at or reach predictably for a
moving object. Theories explain why things happen to be as they are. When
children observe the same event several times, e.g. a ball falling they lose interest
in the event. It seems as they would hold a theory that explains the event.

The change of theories is described by the dynamic features of a theory.
Change requires to compare predictions with observed actions. Continuous con-

tradiction between observation and prediction will lead to theory revision.

2.2 Scientific Theories vs. Naive Theories

2.2.1 Scientific Theories

Theory theorists hypothesize that the formation of theories in children is analo-
gous to scientific theory revision. The process of theory revision has been a con-

troversial topic in the history of science and discussed by Karl Popper, Thomas
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Kuhn and Paul Feyerabend. Among the researchers there are controversies about
the influence of society on the scientific project. Progress in knowledge is often
presented as one theory building upon the other, this monotony has to be ques-
tioned in the course of the thesis.

Kuhn defines normal science as solving puzzles based on paradigms. A paradigm
is a common agreement of knowledge shared by a group of scientists. Having a
paradigm as a framework, the solutions to problems are known in advance and
just have to be worked out. Progress of science requires that paradigms are
exchanged (Kuhn, 1962).

The discovery of scientific theories is a multi-staged process. Normal science
refines existing theories but will not lead to new theories. Anomalies are the
recognition that nature does not follow the predictions of the current body of
theories and paradigms. Researchers will try to explain the anomaly, by adapting
the theories available. For normal science assimilation of new facts into a theory
can only be carried out under the constraint that previous facts remain consistent
with the theories available (Kuhn, 1962). This protects the paradigm against
being given up too quickly.

Theory 3

Theory 2

Theory 1

Figure 2.1: Normal science - One theory building upon the other

It is the impossibility to adapt an existing paradigm that leads to a crisis in
normal science. All efforts fail to correct the existing paradigms. The consequence
of a crisis is a revolution. A revolution involves the change of paradigms. It is
a process that takes place influenced by political, economical and sociological
settings of their scientific communities (Kuhn, 1962).

A theory holds until it is disproved (Popper, 1934). A theory such as “Every
swan is white” holds until a swan having different colored feathers occurs. Falsified
theories have to be rejected and replaced by new theories.

The new theories will allow predictions that were not possible with previous

theories and resolve problems that arise out of the anomalies. Theory change
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influences the way scientists perceive the world. New technology allows to build
new sensors, which lead to a new view about the world. One could hypothesize
that the emergence of new technical abilities changes process descriptions.

Finding new theories is constrained by the general principle of parsimony.
Occam’s razor demands to be careful with the available resources and to make
theories as simple as possible. The scientist depends on the socio-economic en-
vironment and has to be very selective in his experiments to choose among the
number of infinite, possible theories.

The monotony of theory revision does not hold as it has been found that the
detection of a new theory does not necessarily lead to a rejection of the old theory.
The impossibility to proof the fifth axiom out of the given four of the Euclidean
geometry lead to the discovery of a plethora of non Euclidean geometries. These
coexist to the Euclidean geometry (Blumenthal, 1961). Using this argument
Piaget pointed to a coexistence of different competencies in the human organism
(Bringuier, 2004).

At a first glance common sense reasoning seems not to be based on the con-
straints described by the history of science. But empirical research shows analo-
gies between the way children conceptualize the world and the multi-staged pro-
cess scientists go through (Gopnik and Meltzoff, 1997). The following section

discusses how people naively conceptualize the world.

2.2.2 Naive theories

FEmpirical research in psychology suggests that people build naive theories based
on their everyday experience. The behavior and reasoning in experimental spatial
situations is consistent across individuals. Therefore one can use the term com-
mon sense theory, but should keep in mind that the formalized theory is inferred
by an experimenter or scientist.

The formal study of commonsense theories has been started with the inten-
tion to build autonomous robot architectures and artificial intelligent systems
(Hobbs and Moore, 1985). The formal study of naive physics (Hayes, 1978, 1985)
provided commonsense theories for rigid objects and liquids. The commonsense
theories about the motion of objects are inconsistent with fundamental principles
of classical physics, but show similarities to pre-Newtonian physics (McCloskey,
1983).

The American Institute of Physics compiled a list of children’s misconcep-
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tions about the world. The list comprises disciplines such as astronomy, space,
measurement, force and motion and many more. Examples for objects in motion

(see website!) are:
e If an object is at rest, no forces are acting on the object.
e A rigid solid object cannot be compressed or stretched.

e Force is a property of an object. An object has force and when it runs out

of force it stops moving.

Not only children but also adults hold such naive theories (McCloskey, 1983). In-
dividuals often use more than one commonsense theory to explain a phenomenon.
Empirical studies on the coding of object locations give evidence that humans
utilize multiple bodies of theories (Newcombe and Huttenlocher, 2003). Other
empirical studies on strategy discovery revealed that people use multiple strate-
gies simultaneously (Siegler, 2002; Siegler and Araya, 2005) in various problem
domains. Figure 2.2 illustrates the overlapping waves model by Siegler (2002)
in which “older, less advanced strategies continue to be used long after newer,
more advanced strategies have been discovered”. Multiple strategies are available
with age, the x-axis indicates the age in the figure and the y-axis the use of the

strategy in percent.

Siegler’s (2002) empirical studies and his model of adaptive strategy choice
motivate the conclusion that commonsense theories coexist simultaneously. The
use of a theory depends on the context the individual is in. To summarize in
the words of Siegler (2002, p. 34): “Knowledge moves consistently from less to
more advanced, rather than oscillating aimlessly; knowledge often is reorganized,
rather than shifting in superficial ways; and learning is generative, in the sense

that early advances form the foundation for later ones.”

2.2.3 Discussion

The reason that naive conceptualizations differ from scientific explanations is that
everyday reasoning hardly involves measurements. People estimate how far two
objects are from each other, how heavy an object is or how long it takes for an
object to travel along a trajectory. People make comparison based on estimates

and previous experiences.

"http://www.amasci.com /miscon/opphys.html
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Theory 4
Theory 1 Theory 5

% use

Figure 2.2: Overlapping waves model
(in adaptation to (Siegler, 2002))

People build theories based on the perceptions they make in the environment.
The perceptions are different for each individual and that explains why people
build different conceptualizations. The situation is described in one of many
versions of an ancient parabola where six blind born men were asked to describe
an elephant. The blind men conceptualized the elephant as a wall, a tree, a spear,
a snake, a fan, and a rope depending on which parts of the elephant they could

experience (see figure 2.3).

Figure 2.3: Parabola of the elephant

(source: http://www.wordfocus.com/word-act-blindmen.html)

None of them was wrong but also none of them got the whole picture right.
In fact if the set of perceptions individuals are exposed to are identical it could
be that all individuals would end up in the same conceptualization. Or as theory
theorist put it: “If cognitive agents begin with the same initial theory, try to solve

the same problems, are presented with similar patterns of evidence over the same
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period of time, they should converge on the same theories at about the same
time” (Gopnik and Meltzoff, 1997, p.26).

Misconceptions in naive theories are a result of the experience an individual
made. As long as no contradiction occurs there is no need to change the concep-
tualization. In a series of studies childrens’ and adults’ naive conceptualization of
a balance scale has been investigated. The subjects in the empirical study were
asked if the scale will remain balanced or will tip down. If it tips then they were
asked to which side. Cognitive accounts based on conditional rules have been
developed. The rule sets never reached the level of explanation that physicist
would develop (using the torque rule) (Siegler, 1976; Siegler and Chen, 2002).

That is because in scientific theories measuring in a reproducible way is the
tool to objective properties (Feynman, 1998). The process of measuring is influ-
enced by environmental factors, the imprecision of the measuring tool, and the
imperfection of the human senses. Based on the measured magnitudes theories
are judged as valid.

Naive theories are based on beliefs. These are observations of causal links,
and interpretations of the outcome of actions generated out of the naive theories.
Because reasoning is based on perceptions, beliefs can be a result of perceptual

illusions. Perceptual illusions lead to acceptance of false theories.

2.3 Epistemological Considerations

Epistemology is concerned with the source of knowledge. The revision of theories
is very much dependent on the prerequisites. There are two extreme standpoints:

Nativism assumes that all theories are innately given to the organism while
empiricists see the environment as the main source of new theories. Nowadays
there is common agreement among cognitive researchers that both standpoints
are plausible. Interactionist accounts of cognitive development and information
processing assume knowledge to be partly coded from birth, to be learned and
to be mediated through the environment (Gopnik and Meltzoff, 1997; Newcombe
and Huttenlocher, 2003).

2.3.1 Nativism - The Role of Innate Knowledge

Theories may be initially given. New theories are formed by revising given theo-

ries. The revision of the theories is triggered by the environment.
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Nativists suggest the existence of core knowledge with infants that does not
underlie radical changes (Spelke, 1990; Spelke et al., 1992; Spelke, 2000). The
core knowledge comprehends a set of innate theories. The infant can build active
representations, i.e. inferences on the core knowledge in order to derive new
knowledge (Spelke et al., 1992). The model of a modular brain has been proposed
(Fodor, 1987), that encapsulates mental processes, e.g. language (Pinker, 1995)
or mathematics into independent modules.

Studies in the realm of spatial cognition revealed that infants may hold object
representations that preserve identity and persist over occlusion and time (Spelke,
1990, 2000; Baillargeon, 2004b). Infants seem to possess an early notion of dis-
tance (Gopnik et al., 1999, p. 82), they can make predictions whether reaches will
make contact to a moving object (Hofsten et al., 1998), and they show reactions
to object appearances (Piaget, 1950; Bower, 1974). Gopnik and Meltzoff (1997)

suggest that three innate theories are relevant for cognitive development:

1. A theory of appearances that explains object permanence, i.e. objects en-

dure through space and time and do not magically disappear.

2. A theory of actions that explains the difference between actions of the self

and others.

3. A theory of object kinds that helps to build categories such as a distinction
of living and dead objects.

2.3.2 Empiricism - The Role of the Environment

Theories may be determined by the environment with little initial knowledge. In
the empiristic view the focus of cognitive development is on the social setting of
the infant. The surrounding conditions consist of parents, relatives and friends
but also culture and environment in a wider sense guide the cognitive development
(Pine, 1999; Gopnik et al., 1999).

How much children depend on their social environment can be seen with
infants attraction to faces. Another example is the well developed early imitation
mechanism. It helps the child to distinguish the self from others (Rochat and
Hespos, 1996; Meltzoff, 2004). The absence of others can heavily influence social
behavior and cognitive development, as demonstrated by Kaspar Hauser 1828 in

Niirnberg, Germany.



Chapter 2 - Theories and Theory Forming 20

When adults repeat words that toddlers said, they unconsciously help them at
language acquisition. Scaffolding is a follow up theory of Vygotskys’ sociocultural
empiricism. Parents and teachers scaffold temporarily children’s knowledge in
order to help them to act independently by giving hints in the right moment of
problem solving tasks, asking questions or showing procedures that children can
then imitate (Rogoff (1990) as cited in Pine (1999)), e.g. Granott et al. (2002)
found evidence that scaffolding appears in problem solving tasks testing peer

groups of students.

2.4 Formal Models of Cognitive Development

The theories of nativism and empiricism inspires two types of computational
models. The focus of the models is either on reasoning processes over explic-
itly stored knowledge or on the processing and acquisition of knowledge through
the environment. Researchers in language acquisition and semantics have been
distinguishing symbolic and grounded models.

Symbolic models are based on a universal, conceptual system. They stress the
importance of innate given knowledge. The acquisition of linguistic meaning is a
mapping process of new emerging symbols to an available universal system. The
universal system is innate or learned pre-linguistically. There is a strict distinc-
tion between the lingual and the non-lingual system that develop independently.
The role of perception is often neglected in this view (Pinker, 1995; Gasser and
Colunga, 1997).

Grounded models stress the importance of perception in the acquisition of
linguistic meaning. Gasser and Colunga (1997) differentiate two subtypes of
grounded models: models that make a distinction between linguistic meaning,
and non-linguistic concepts e.g. Regier (1996), and those that do not e.g. Gasser
and Colunga (1997). The later concepts may be learned in three ways: through
non-linguistic perceptual and motor experience, through a combination of non-
linguistic and linguistic experience, and through linguistic input alone (Gasser
and Colunga, 1997).

Mareschal (2003) reviews three groups of computational models for cognitive
development. Symbolic models represent knowledge in terms of symbols and use
grammar rules and syntax to connect symbols to new expressions. Subsymbolic or
connectionist models encode knowledge in networks analogously to human brain

cells. Dynamic systems are mostly mathematical models based on differential
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equations, finite state machines or cellular automata.

A formal model serves to build a sound cognitive theory because all terms have
to be defined in order to yield an executable model. The present thesis proposes a
formal model of spatial data acquisition motivated by the theory theory . Previous
formal models that could be used to model spatial theories and their change are

reviewed in the subsequent three sections.

2.4.1 Symbolic Models

The work of Young (1976) shows that a theory of sorting can be expressed by a
set of rules. The formal model simulates three stages of Piaget’s seriation task.
In order to change from one stage to another rules are added or deleted from a
production system 2. Other Piagetian tasks such as the identity theory of object
concept development in infancy (Piaget, 1950) were modeled using production
systems. The model is based on five search behavior rules and three conceptual
rules (Luger et al., 1983, 1984).

These early models illustrate that a naive theory can be described by a set
of rules in a production system. Theory change can be modeled by adding and
deleting rules. It is not required to change the whole theory, i.e. the set of rules.

The models do not automatically proceed from one stage to the other and
they also do not reuse old rules. Siegler and Shipley (1995) implemented strategy
choice based on a probabilistic cost-efficiency account. The rules in the model
are randomly perturbed and tested. Those rules that get more evidence will
survive the others will die off. An important aspect of the model is that rules
are maintained over a longer period of time and do not immediately disappear of
the knowledge base. Old or unused rules are kept in a pool. This allows a later
reactivation.

Until lately effects such as memorizing inputs could not be explained by sym-
bolic approaches. The models response to a specific input was always the same
no matter if the stimulus was given immediately or with a delay. However a

delay of the stimulus has an influence on the outcome in empirical studies of

2A production system consists of a set of rules or productions that describe which actions
have to be taken in order to solve a given problem. Each production has a condition and an
action part, such as an if ... then ... else clause. The action part of the rules alter the working
memory of the production system that describes the current state of the world via patterns. In a
recognize-act control cycle a given problem description is maintained as patterns in the working
memory and matched against the production rules. If several productions fit to a given problem
a conflict resolution has to take place (Newell and Simon, 1972).
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cognitive development (Thelen et al., 2001). Later models also consider effects of
memorizing, consciousness and attention by introducing weighting mechanisms
and stochastic such as models by Siegler and collaborators (Shrager and Siegler,
1998; Siegler and Araya, 2005).

The cognitive science community provided a number of architectures. Two
representatives that are actively improved are the symbolic cognitive architecture
SOAR (States, Operators and Reasoning) (Laird et al., 1987) and the Adaptive
Control of Thought, Rational architecture ACT-R (Anderson, 1993). A plethora
of variations of these frameworks is available, including models for spatial rea-

soning and navigation (see the ACT-R website 3).

2.4.2 Connectionist Models

Connectionist models are inspired by neural activities, they are also known as par-
allel distributed processing systems. The key idea of neural nets is that knowledge
is processed parallel by simply interconnected processors rather than by a single
processing unit. Therefore a neural net consists of cells also called units and
weighted links that connect the units. The weights describe connection strength.
The links between the units are analogous to axons and dendrites in the human
brain. Some researchers see therefore a biological grounding in connectionist
models.

Neural nets are an attempt to overcome the shortcomings of symbolic models
that do not explain how knowledge develops. They focus on cognitive develop-
ment as a process that is just controlled by perception, e.g. data that a robot
receives from sensors. The use of explicit symbolic mental representations is omit-
ted (Hiraki et al., 1998; Mareschal, 2003; Schlesinger and Parisi, 2001; Parisi and
Schlesinger, 2002; Munkata and McClelland, 2003).

The simplest example of a neural net is a feedforward network. It consists of
an input and an output layer. More advanced versions of feedforward networks
have several input layers and can also have hidden layers. Feedforward networks
are directed and work just in one way (see Figure 2.4).

Recurrent networks allow the definition of paths back to a unit through itself
or other units. The networks need not be coded by hand. A backpropagation
algorithm can be used together with a set of training data to build the network.

The supervised learning algorithm propagates errors from output nodes backward

3http://act-r.psy.cmu.edu/publications/index.php
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to input nodes by comparing the actual output of the network with the expected
output. A reweighting of the links is carried out to adjust the performance of
the network. The network is trained until the measurable difference of the actual

output and the expected output falls under a threshold.

Input Layer Hidden Layer Output Layer

Input #1 -’O
Input #2 \
Output
Input #3 /
Input #4

Figure 2.4: Feedforward Network
(source: USGS, http://smig.usgs.gov/SMIG /features_0902/tualatin_ann.fig3.gif )

A number of connectionist models have been proposed to model children’s
spatial cognition. The development of spatial concepts in linguistics has been
modeled (Regier, 1996; Gasser and Colunga, 1997). The neural net mechanism
of Terry Regier is able to learn spatial relations in a number of languages with-
out negative evidence. In order to overcome the missing negative evidence he
introduces constraints into the neural network, i.e. constrained connectionism
(Regier, 1996). The constraints represent knowledge at a price of losing flexibil-
ity. The structures have to be hard wired and can not be gained through training
or automatic adaptation (Regier, 1996).

Other connectionist networks have been implemented that can track occluded
objects in accordance to studies carried out in developmental psychology. The
models can predict the position of a moving object after an adequate training
phase. Variations of the experimental setup have been tested and implemented
in the neural net in order to explain contextual influences (Mareschal, 2000;
Schlesinger and Parisi, 2001; Schlesinger and Young, 2003).

Various robot architectures have been implemented using neural nets (Scas-
sellati, 2000). The goal is to build robots that communicate with humans (Hideki
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and Hiroyuki, 2001) and can build conceptual models of their environments in
order to act on objects (Fitzpatrick et al., 2003). Hiraki et al. (1998) focused on
spatial cognition and provide a connectionist robot implementation that models

the shift of egocentric to allocentric location coding in an object retrieval task.

2.4.3 Dynamic System Models

Dynamic systems can be finite state machines, a set of differential equations, cellu-
lar automata or Turing machines (Beer, 2000). Dynamic system theory has been
adequate to describe the interaction of multiple cognitive competences, such as
perceiving, remembering and acting. Two examples for robot architectures that
consider the simultaneous and competitive interaction of spatial competences are
the subsumption architecture (Brooks, 1986) and the spatial semantic hierarchy
(Kuipers, 1998, 2000). Brooks suggested a subsumption architecture in order to
deal with the different interacting levels of competence. Higher levels subsume
the roles of lower levels. The lower levels continue to function when new com-
petence is added (Brooks, 1986). The spatial semantic hierarchy is a model of
the human cognitive map and a method for robot exploration and map building.
The model has five layers that can deal with sensory, control, causal, topological
and metrical information (Kuipers, 1998, 2000).

In a dynamic model of Piaget’s A-not-B error* Thelen et al. (2001) show how
goal directed actions such as looking, planning, reaching and remembering can

be united in one framework of processes using differential equations.

The equations describe fields to implement the infant’s motor encoding. The
activation and decay of the different fields are summed up to a single representa-
tion field that stands for the motor action of the infant. The dynamic field model
of Thelen and collaborators is an abstract model for the dynamics of multiple
processes in the brain and body (Thelen et al., 2001).

Figure 2.5 shows the subsequent steps of the A-not-B task from the presen-
tation of the stimulus to the reaching for a hidden object. The star illustrates
the object hidden under one of two cups. On the left side of the figure the
modeled actions are listed. The infant’s planning to reach for the object is illus-

trated through wave diagrams that have been described by differential equations.

47-12 months old infants that continuously reach for an object that was hidden at position
A continue to reach for that object at position A even if they saw the object being hidden at
another location B. This phenomenon called the A-not-B error puzzles psychologists for a long
time and is the subject of intensive research.
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Figure 2.5: Dynamic model of the A-not-B error
(source: Thelen et al. (2001))

Each diagram is a snapshot of the single representation field at a certain point of
time. Whenever the amplitude of the wave exceeds a certain threshold the model
“reaches” towards a location (see the diagram in the line of the reach action in
figure 2.5) indicated by the wavelength and wavenumber. Memorizing has been
modeled as an additional term in the representation field that activates or damps
the wave depending on previous trials (Thelen et al., 2001).

Dynamic systems models integrate different processes into one framework.
Therefore they are an interesting tool for geoinformation scientists concerning
the problem of interoperability. However it would require a general approach
to describe processes in the various domains of geoinformation using dynamic
systems. A first step is the classification of possible differential equations for

geographic information (Hofer, 2007).

2.5 Summary

In the present thesis a theory is a body of rules to predict spatial properties of
objects in an environment. This body of rules is built through observing the
world. Theories are revised when the generated predictions (beliefs) do not fit
with the observations made in an environment. The thesis describes the change

of theories formally, as sequences of theories.
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Observation and prediction serve to shape a theory. Theories that explain the
world better transform out of their ancestor theories (see figure 2.6). They are
preferred to theories that do not explain the world fully.

Scientific and naive theories show commonalities. Firstly the process of naive
knowledge discovery is constrained by the human body and the perception of a
common shared reality such as scientific knowledge discovery is constrained by
socio-economic settings. Secondly the revision of theories advances from simple
to complex theories. Thirdly scientific and naive theories coexist simultaneously

rather than building one upon the other.

adaptation

Figure 2.6: The formation of theories

The theory theory proposes that children and scientists form theories of the
world by building and testing hypotheses. I reviewed computational models of
cognitive development as means to formally describe the processes of theory acqui-
sition and theory change. In the following chapter I propose that formal theories
of space and their change can be modeled by using an algebraic approach. In
terms of the theory theory spatial reasoning is based on a set of small theories,
that have been developed during childhood and endure with adults in a revised

form.



Chapter 3

A Calculus of Spatial Theory
Change

I would like to go one step further with the idea of the theory theory and ar-
gue that human naive understanding of space is based on small theories. These
spatial theories underlie qualitative change and build sequences. In the thesis a
formal description of spatial theories and their change will be provided as a ba-
sis to build geographic information systems grounded in people’s commonsense
understanding of space.

I am going to concentrate on the change of spatial theories in the light of new
evidence. The aim is a formal description of ever qualitatively changing concepts.
I assume that spatial concepts are first formed by observing other people acting
and operating with objects. At a later stage the own actions on the objects are
evaluated to build spatial concepts. In order to build categories such as containers
or supporters, means to build an understanding of how containers behave when
they move, when they are lifted, and when they are turned around.

When babies start to explore actively their surroundings they are two months
old. At this age the infants have developed a sense of self-awareness. The infants
then gradually explores the environment by observation - being a simple spectator.
Once the motor capabilities grow infants get into the role of an actor in their
environment (Rochat, 2004).

In this chapter a theory driven agent based on algebraic specifications is intro-
duced. The agent is a wrapper for a mechanism that builds sequences of spatial
theories based on observations in an environment. The model is an analogy to

the developing child that can change its mind based on observations of the envi-

27
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ronment. The model is deterministic and grounds in previous work in cognitive

science. Design decisions towards a calculus of spatial theory change are outlined.

3.1 Spatial Theories

Space has a certain primacy in our lives, humans can not escape the situatedness
in a spatial environment. People are in space and their everyday commonsense
understanding of space helps them to find ways through the environment. In
order to localize objects in an environment, operations with objects are observed
and causal effects based on spatial relationships predicted.

Naive geography suggests that spatial, cognitive processes can be described
by a set of theories (Egenhofer and Mark, 1995). Studies specifically investigated
naive understanding of space and identified a number of “spatial misconceptions”
(McCloskey, 1983; Nelson et al., 1992). Egenhofer and Mark (1995) partially

listed a set of theories that people have about the surrounding geographic world:

e The earth is flat.

e Maps are more real than experience.

Boundaries are sometimes entities, sometimes not.

Topology matters, metric refines.

Distances are asymmetric.

These commonsense beliefs have to be considered in the user interfaces of geo-
graphic information systems. Then geographic information systems will be widely
accepted among laymen (Frank, 1993). In order to achieve this there is a need
for formal descriptions of naive theories about space. Recent formal descriptions
of naive spatial theories have been based on image schemata.

According to Johnson (1987) the concepts of the world are structured in image
schemata. Image schemata mentally organize our understanding and reasoning
of the world (Johnson, 1987). They are embodied descriptions of the real world

such as containers, surfaces and links (see table 2.1).

Image schemata lead to object based models for the use of geographic in-
formation systems (Rodriguez and Egenhofer, 1997; Frank and Raubal, 1998;
Frank, 1998; Frank and Raubal, 1999; Rodriguez and Egenhofer, 2000; Ruetschi
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Container Balance Full-Empty  Iteration Compulsion
Blockage  Counterforce Process Surface Restraint Removal
Enablement  Attraction Matching  Part-Whole Mass-Count
Path Link Collection Contact Center-Periphery
Cycle Splitting Merging Object Scale

Table 3.1: Partial list of image schemata as defined by Johnson (1987)

and Timpf, 2005). Among the models two research goals can be observed. One
direction of research concentrates on improvement of user interfaces, e.g. (Kuhn
and Frank, 1991a). Another direction of research carries out the formalization
of image schemata with the aim to improve interoperability, e.g. (Frank and
Raubal, 1999).

Formalizations have been suggested using predicate calculus, relations, func-
tions and model-based approaches. Predicate calculus is limited by the so called
frame problem (McCarthy and Hayes, 1969). Relation tables grow with the square
of the number of relations involved. Similar growth rates in complexity apply for
function tables. Due to these constraints in complexity, model based approaches
seem to be the most promising candidates for a formalization of image schemata
(Frank, 1998).

In order to formalize image schemata it is necessary to concentrate on a
very specific example, e.g. the axiomatic approach by Rodriguez and Egenhofer
(2000). The frame problem can be overcome by introducing a scene and describing
changes as subsequent operations on the scene. Spatial semantics is described by
the operations used with the model, e.g. the operation put_in implies containment
(Egenhofer and Rodriguez, 1999; Rodriguez and Egenhofer, 2000). Note that the
models have been made up in the mind of the researchers.

Another direction of research formalized image schemata using linguistic ap-
proaches (Frank, 1998; Frank and Raubal, 1998). There the question remains to
which degree language influences our spatial concepts. Concepts of space do not
necessarily have to be reflected in the language we use. Different mechanisms of
cognition and perception may work on the concepts before they are externalized
through a lingual system.

The present research shows parallelisms to previous work and concentrates
on an object based model for spatial theories in a small scale space environment.
Mechanisms will be introduced to build sequences of spatial theories and their

change. An agent builds new theories based on observations of operations with
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objects in an environment. In comparison with previous work the proposed model

is novel in two aspects:

1. Empirical studies on infants knowledge of the physical object world (Hespos
and Baillargeon, 2001a,b; Luo and Baillargeon, 2005; Baillargeon, 2004a,b)
are used to build the model. This makes it different from previous work
as the modeled environment is not made up in the mind of the researcher.
The model can be validated by carrying out a simulation and comparing

the simulation with the outcome of the empircial studies.

2. Several developmental psychologists observed that spatial relations are learned
in the first two years of life, a phase that is usually before the capability
of speaking. The empiricial studies formalized investigate pre-linguistic
concepts overcoming the problems with linguistic approaches. The formal
theories are a possible explanation of the acquisition of image schemata
(Johnson, 1987).

The following section sketches how an agent can be endowed with a set of theories.
The model is motivated by infants that learn to know their environment. The
following sections serve to explain the elements for a calculus of spatial theory

change.

3.2 Theory driven Agent

Agents are an approach to deal with the complexity of building a model for con-
ceptual theory change. The agent based approach allows to reduce reasoning
processes to abstract parts and studies the interaction between these parts. Sub-
sequent refinement of the model leads to a better understanding of the underlying
cognitive processes.

An agent can stand for a technical concept, a metaphor or a design model
(Nwana and Ndumu, 1999). Russell and Norvig (1995) define an agent as “any-
thing that can be viewed as perceiving its environment and is acting upon it
through effectors”. This definition has been adopted by researchers in geoinfor-
mation science (Raubal, 2001; Krek, 2002) and captures the crucial aspects of
agency.

In the course of the thesis the term agent stands for a very generalized concept,

for which a generic type of model exists. For a discussion of agent architectures
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see e.g. (Woolridge, 1999), aspects of embodiment are discussed in Ziemke (2003)
and the elements of a learning agent can be found in Russell and Norvig (1995).
Agents as an analogy to the developing child are discussed in Schlesinger and
Parisi (2001) and Schlesinger (2002). The agent here is a wrapper to cognitive
processes that define the change of spatial theories. The agent is situated in an

environment.
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Agent @ Environment

Figure 3.1: Agent acting in an environment

The term theory driven agent specifies the agent as holding theories about
its environment. The theories are explicitly given to the agent by the modeler
and not built automatically through an inference mechanism. The agent observes
operations in the environment and can use the theories to build predictions about
the observed operations (see figure 3.1). Frequent mismatches between observa-
tion and prediction elicit changes in the knowledge base of the agent. The agent

chooses among the available theories the theory that fits its observations best.

3.3 Affordances in the Environment

Affordances in the environment explain why agents are selective among the in-
finite amount of possible operations that can be carried out over an arbitrary
object. There is a strong coupling between the properties and the actions of an
object. Objects afford what the agent can do with them.

Gibson’s theory of affordances (Gibson, 1979) has been utilized to design
agents that make sense of their environment (Raubal, 2001; Viezzer and Nieuwen-
huis, 2005). An affordance guides the agents actions it comprehends the object
and the subject, i.e. the agent and the environment. This is called an ecological

approach.
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Objects in the environment afford actions. The affordances depend on the
properties of the object and lead to actions. A door handle will afford to push or
pull the door.

Affordances have a functional aspect because they group objects by their
potential use. Objects are described by the operations that can be carried out
over them. A stone and a hammer are in the same object category when used to
drive a nail in a piece of wood.

Affordances have also a discriminative aspect. Things that have the same use
may have similar features or object attributes. The hammer and the stone are
both rigid and not eatable.

The agent repetitively carries out the afforded actions with the objects in
order to learn about their usage and to categorize them. This is analogous to the
infant’s play. Affordances also depend on the experience the agent has already
made. In an early phase of infancy children would investigate any object with
their mouth when they are hindered to move their arms (Rochat, 2004). The
world is separated into eatable and non eatable, graspable and not graspable,
etc. A long period of infancy serves to test and to reason about objects and their

affordances.

3.4 Testing Theories

3.4.1 The rational infant

In the book “The Rational Infant”, Bower (1989) argues that babies formulate
hypothesis and test them. The main part of this subsection is reviewed from
Bower’s book. The term hypothesis can be used here interchangeably with the
definition of theory given in chapter two of the thesis. Hypothesis are used to
predict the outcome of an operation. Observation of a different outcome than
predicted leads to theory change.

Based on empirical studies Bower states that six to eight week old babies start
to verify hypotheses in a Popperian manner. Babies try to prove by disproof. In
the empirical study limb movements | of a baby elicit movements of a mobile m
(see figure 3.2). This was done based on a contingent reinforcement schedule,

whenever the leg moved the mobile movement was elicited.
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Figure 3.2: Mobile Experiment with contingent reinforcement
(source: Bower (1989))

“Suppose our baby is lying there making random limb movements.
Our baby then notices that the mobile occasionally is turning. He be-
gins to suspect that there is some relationship between limb-movement
and mobile movement. He begins [...] to formulate a hypothesis about

a possible relation between | and m.” (Bower, 1989)

The empirical data gave evidence that the babies’ behavior was such as obtaining
information for testing the following two inequalities. p stands for the probability,

1 for limb movements m for mobile movements:
p(IAm) > p(=l Am) and p(—~IA—m) > p(l A —=m)

In order to detect the contingency between | and m the baby has to test the
positive and the negative instances. Babies should move their limbs in the same

extent as not moving. A phase of extensively moving the limbs (IAm) followed
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by a phase of extensively “not moving” the limbs was observed (—IA-m). At
this point the babies could hold a theory that [ — m or =[ — —m. Here Bower
(1989) introduced non contingent reinforcement, i.e. a mobile movement was
elicited without a prior leg movements (=l A m). The baby could reason now
that | — m is true and -l — —m is false. The babies could be satisfied with the
given information but instead of leaving the experiment the babies started again
to actively move their limbs such as to disproof the acquired theory of I — m.
Looking at the truth table 3.2 one can see that occurrences of (I A =m) would

falsify the acquired theory.

ll‘m‘l—wn
t|t t
flt t
t | f f
f|f t

Table 3.2: Truth table for the mobile experiment by Bower (1989)

The kind of reasoning explained in the paragraph above is perfectly logical.
Bower (1989) refers to the adults rational logical system. This logical system is

based on two truth values and can be characterized by three axioms:
e the law of identity ( p — p),
e the law of the excluded middle ( p V —p) and
e the law of non-contradiction ( —=(p A —p)).

Piaget proposed that infants hold another system of logic than adults (Piaget
1982 in Bower 1989). By omitting the second and third axiom a new system of
logic based on 4 truth values (see figure 3.3) can be won (Belnap, 1977). The
truth values are true, false, true or false and true and false. This kind of logic
would help the infant to exclude invalid hypotheses from reasoning.

A hypothesis may take any of the four values. The untested hypothesis is at
the same time both true or false. Observations will lead to hypotheses that are
verified as true or falsified as false. Hypotheses that are true and hypothesis that
are false will be adopted in the reasoning processes of the infant. But observations
will also lead to hypotheses that are both true and false. A hypothesis that is
both true and false at the same time can not be used for reasoning and will be

isolated of the infants’ reasoning processes (Bower, 1989).
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True
Both true Neither true
and false nor false
False

Figure 3.3: 4-valued logic

3.4.2 Theory Change

Theories that are both true and false at the same time need to be adapted.
Adaptation is defined as making the theories fit to observations of the outcome
of operations in an environment. It is not meant as replacing the whole theory
but exchanging part of it following the hypothesis that spatial theories can be
described by a set of axioms and that a spatial theory can be adapted by adding,
deleting and weighting axioms. In the machine learning literature the process
of theory acquisition and change is described as a three step procedure (DeJong
(1997) in Baillargeon (2004)).

1. Noticing a contrasting outcome of a theory.
2. Search for the conditions that map onto these outcomes.

3. Build a theory based on the condition-outcome pair using prior knowledge

In adaptation to a model for strategy choice based on rule sets (Siegler and Chen,
2002) the discovery of a new theory can be described as a four step procedure.
It depends on the agent’s environment, the learning capabilities of the agent and

on the prior knowledge:

1. Noticing a new percept. I assume a closed set of available percepts given
through an environment, constrained by affordances. Percepts pop up. -

The model integrates them into theories.

2. Formulating a theory including the new percept. The formulation of a

theory is based on previous theories and percepts. A mechanism could be
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based on logical or probabilistic inference. In the course of the thesis I
decided not to implement an inference mechanism as there is a number
available in the literature and rather focus on theory change mechanisms

with algebraic tools.

3. Generalizing the new theory to novel problems by using it consistently after
it was formulated. In order to evaluate the appropriateness of a formulated
theory it has to explain not only the given data but also future observa-
tions. The theory has to be tested. To test a theory, positive and negative
evidence must be collected (Bower, 1989). Psychologists observed in early
word studies across languages that children show verbalization of success
(“There”, “Done it”, “Good”) and failure (“Oh dear”, “no”) (Gopnik and
Meltzoff, 1997). Based on the positive and negative evidence a theory can
be classified as untested (true or false), true, false or to be adapted (true

and false see also figure 3.3).

4. Maintaining the theory, although no further feedback is given. The main-
tenance of theories without feedback is of great importance. Piaget argues
that the formulation of a new theory does not necessarily mean that an old
theory has to be abandoned. The old theory coexists to the newly generated
theory as special cases of a more general theory (cf. discussion of Euclidean

geometry in section 2.2.1) (Bringuier, 2004).

The present approach is a commitment to moderate nativism and symbolic mod-
els. Meltzoff terms it “kick start nativism” (Meltzoff, 2004) and Karmiloff Smith
proposes the term representational redescription (Karmiloff-Smith, 1992) mean-
ing a set of innate given theories that is triggered by observations of objects,
people and operations in an environment. Besides building theories through di-
rect perception of the environment new theories are also built by the combination

of other previously acquired theories.

3.4.3 Dynamic Weighting

Feedback is an important mechanism in order to test a theory. If observations
support the new theory it will be maintained otherwise it has to be modified
or given up. Any learning mechanism for conceptual change needs therefore to

introduce a dynamic weighting mechanism.
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Spatial reasoning is often supported by direct feedback e.g. an object can be
found in a certain location or not. In way finding the destination can be found or
not. Positive evidence, i.e. finding objects in locations reinforces the strategies
we use in spatial reasoning in order to survive. Negative evidence leads to a decay
of strategies.

Newcombe and Huttenlocher (2003) gave empirical evidence for the coexis-
tence of cognitive spatial mechanisms with infants. They describe the coding of
object locations by a framework of four competing competences: sensorimotor
learning, dead reckoning, cue learning and place learning. Depending how much
experience the human has one mechanism is favored to the other, e.g. a movement
that is carried out very often such as the daily way to work is coded sensorimo-
torically rather than using dead reckoning. The strategy of sensorimotor learning
has a higher weight than dead reckoning (Newcombe and Huttenlocher, 2003).
The authors suggest that any theory of learning needs to implement a dynamic
weighting mechanism.

Regier (1996) investigates the acquisition of spatial semantics in children us-
ing a dynamic weighting mechanism in a structured neural net. The weighting
mechanism treats positive evidence superior to negative evidence. This is done
in order to overcome the no-negative evidence problem and to avoid overgeneral-
ization in the learning process of the connectionist model.

Dynamic weighting is vital for the design of a theory driven agent. The mental
model of the agent can consider different type of theories. Theories that receive
frequent positive feedback will be treated superior to theories that receive no or
negative feedback. The dynamic weighting of the theories helps to grade theories

based on their conformance with observations in the environment.

3.5 Mechanisms to Structure Theories

In order to treat theories formally it is necessary to describe them in a data struc-
ture. Operators are necessary to navigate through this structure. Mechanisms
are necessary to create, delete and adapt the theories. Two approaches motivated

the formal description of theories in this thesis:
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3.5.1 Blending

Cognitive linguists suggest blending as a cognitive mapping between mental
spaces. The blend is a space with its own emergent structure evolving from two
input spaces (Fauconnier, 1997). Some of the blend space’s structure is inherited
of the input space’s structure. In order to create a blend several conditions must
hold: There must be a partial mapping of counterparts between the input spaces
(cross-space mapping). A generic-space maps onto each of the inputs, represent-
ing a common structure shared by the input spaces. The blend-space is defined
as a partial projection of the input spaces onto the blend. Here the blend inherits
structure of the input spaces. The three mechanisms of composition, comple-

tion and elaboration constitute the emerging structure of the blend (Fauconnier,

1997).
SN

Input Space 1 Input Space 2

Blend Space

Figure 3.4: Conceptual Model Blending

Blending is an analogy to theory change as defined in the present thesis.
Different theories serve as input spaces that can be firstly mapped to more generic
theories and secondly blended to more specific theories. In the course of the thesis
it will be shown formally how predictions and observations of operations in the

environment will lead to more specific theories.

3.5.2 Lattice of Theories

Unfortunately the model of cognitive mapping (Fauconnier, 1997) is not described
formally enough in order to be implemented in a computer. A more formal
proposal has been provided based on logical theories (Sowa, 1999). The lattice
of theories is a generalization hierarchy, where each theory is a generalization of

the ones below and a specialization of the ones above it. The topmost theory is a
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tautology, i.e. all logically true propositions that can be proved from the empty
set. New theories are derived from the ones above by inheriting old and adding
new axioms. Lower theories are larger in terms of axioms but smaller and thus

more specialized in the number of instances they describe (Sowa, 1999).

<

Lattice Tree Irregular

Figure 3.5: Organization of Theories by contraction
(source: (SOW&, 1999))

For example a theory that describes a moveable object inside a container
is constrained by two axioms: one axiom for the movability of the object and
one axiom for the containment of the object. A generalized theory describes
moving objects based on the axiom for movability. Note that the “moveable
inside container” theory has one axiom more than the “movable object” theory.
An infant observes generally more moving objects than moving objects, inside a
container. The “moveable inside container” theory has therefore less instances in
the world and receives less evidence. Aristotle termed this property of theories
and instances the inverse relationship between intension and extension.

Alchourrén et al. (1985) suggest three operators of contraction, expansion and
revision to navigate within a lattice of theories:

Any theory can be contracted or reduced to a smaller, simpler theory by
deleting one or more axioms. Fach contraction step is an upward movement in
the lattice of theories. Multiple contraction steps lead to the empty or universal
theory. Note that contraction blocks proofs that depend on the deleted axioms.

Any theory can be expanded to a bigger theory by adding one or more axioms
to it. Each expansion step is an upward movement in the lattice of theories.
Multiple expansion steps lead to inconsistent or absurd theories, i.e. theories

containing all axioms.

Subsequent contraction and expansion steps lead to theory revision. Figure

3.6 illustrates theory revision. Let a theory with an axiom predict that all objects
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that fall down taste like strawberry, and another theory with an axiom predict
that all unsupported objects fall down. By adding the axiom of unsupported
objects and deleting the axiom of strawberry flavor theory revision takes place.
The new theory is based on the support of objects, while the old theory was based
on the taste of objects.

In extension to Alchourrén et al. (1985), Sowa (1999) defines analogy as a
fourth possibility to theory revision. Analogy requires the detection of structural
similarities between theories. Types, relations and individuals that appear in the
axioms have to be renamed from the source to the target domain. Analogies lead
to new theories by jumps in the lattice of theories (see figure 3.6).

The lattice of theories is a formal approach to structure theories. Algebraic
theories can be described with the adaptation of axioms in the lattice of theories.
The operators of contraction, expansion, revision, and analogy can be used to

model theory change.

3.6 Towards an Algebraic Model

There are controversial discussions what modeling technique to use. Previous
research suggests to build either a symbolic or a connectionist model and to
choose between a deterministic or stochastic modelling technique. The present
research suggests a model that lies somewhere in between.

The theory driven agent is based on algebraic specifications. Three reasons
gave the way to this modeling strategy. First algebra is a mathematical sound
framework. Second together with a type safe functional programming language

algebraic specifications allows rapid prototyping, and third algebras offer mecha-
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nisms for abstraction.

In a series of articles in the science magazine infants learning of speech with
algebraic rules has been discussed (Marcus et al., 1999; Shastri, 1999; Seidenberg
and Elman, 1999). Seven month old infants were habituated to sequences of
syllables having solely the pattern ABA or the pattern ABB. In a test phase
infants were confronted with new sequences, having both patterns ABA and ABB.
It was found that infants showed a preference for the unhabituated, unknown
pattern, suggesting that the infants are capable of using an algebraic rule such
as “the first item X is the same as the third item Y” in the given task (Marcus
et al., 1999; Marcus, 2001).

Shastri (1999) showed that a connectionist network architecture can acquire
algebraic rules given in an appropriate presentation. The problem of learning
algebraic rules could be reduced to finding spatiotemporal patterns in the nodes of
the connectionist network. The proposed model could learn from a small number
of examples, generalizing to new data without being given negative evidence.

Today the view is intertwined, cognition works like a neural net but also like
a symbol processor that abstracts at a higher level (e.g. Kuipers (2000)). When
modeling neural networks researchers give up understanding the way knowledge
is encoded. The network’s behavior during simulation is observed and conclusions
about the operation are made (Regier, 1996). Knowledge about a certain fact or
phenomena is a state of the network at a certain timepoint.

The present research suggests a model that is well determined at any given
timepoint. Algebraic specifications serve to describe formally spatial theories.
Objects that move, objects that contain each other, objects that can rest on
each other are all described by different algebras. Each algebra groups common
objects that behave similarly under certain operations, e.g. all objects that move
freely vs. those objects that move under a constraint, e.g. a rubber-band or in

the vicinity of an attraction field such as a magnet (see figure 3.7).

- —_ .
rubberband
! e , ............... ! ! #
attractor

Figure 3.7: Movement without (a) and under constraints of (b) a rubber-band
and (c) magnetism
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Such explicit descriptions of spatial theories also allow to describe how changes
from simple theories to more complex theories may work. The distinction between
freely moving objects and objects on a rubber-band may be made by just adapting

an axiom for an operation that anticipates the movement of the solid object:

e A freely moving object moves from A to B

e An object on a rubberband moves from A to B and then back towards A.

For the description of an object in the vicinity of a magnet further constraints
have to be considered. If the object is magnetic at all it could be repelled or at-
tracted. In the subsequent chapter I discuss three selected examples for sequences
of theories in order to find mechanisms that explain how to advance from simple
to more complex theories. The paradigm of symbolic description is a necessary

abstraction step to investigate these mechanisms.

3.7 Summary

In the course of the thesis a simple model of theory acquisition and change based
on observations of the environment is proposed. A theory driven agent that is
exposed to an environment has been introduced. Theories are explicitly given to
the agent and not built by the agent. The agent holds algebraic theories about
an environment and tests these theories (see figure 3.1). Frequent mismatches
between observation and prediction elicit changes in the algebraic structure. Af-
fordances limit the operations available to the agent. The agent chooses among
the available algebraic theories the theory that fits best to its observations.

The present approach is a commitment to symbolic modeling. An explicit
representation of naive theories is the aim of the research. Therefore the algebraic
approach has been favored over connectionist models and stochastic methods.

The formal theories developed in this thesis are a contribution to the naive
geography project. The present research approach concentrates on empirical
data that are prelinguistic in order to overcome language constraints and artificial
environments. This is novel in comparison with previous work carried out utilizing
image schemata. The following chapter provides empirical data from studies

carried out in developmental psychology for commonsense spatial theories.



Chapter 4
Sequences of Theories

Theories develop in sequences. In the following chapter I am going to review
empirical data that supports sequences of spatial theories. Incrementally growing
theories for the occlusion, containment and support of objects are presented.
Based on empirical studies three mechanisms to build sequences of theories have

been worked out.

4.1 Empirical Studies

In this thesis I refer to the type of empirical studies that interpret the behavior
of infants in a laboratory. As infants cannot communicate what they know about
the world, special designed studies have to be carried out to make statements
about children’s knowledge. Figure 4.1 shows the setup of an empirical study.
The toddler sits on the lap of the parent and observes a test condition. Other
stimuli are blocked away from the toddler. A test condition is carried out by
an experimenter. A second researcher observes the behavior of the infant, not
knowing the infant nor the objectives of the empirical study. The observer cannot

see the tested stimulus.

43
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Figure 4.1: Design of a preferential looking study

Passive measure studies interpret indications for the excitement of an infant
(heartbeat rate, frequency of pacifier sucking or preferential looking) as a reaction
to a novel event (Bower, 1974; Rochat, 2004). The researchers exploit the fact
that infants prefer to attend longer to unknown events than to known phenomena
(see figure 4.2). Spontaneous looking time declines when the same stimulus is
repeatedly presented to an infant. The subsequent presentation of a new stimulus
leads to an increase of looking time as it represents a novel event (see figure 4.4).
This behavior occurs with children and adults and is utilized by researchers to

infer which conceptions the subjects hold about the world.

Figure 4.2: A 3 month old child looking at a novel object

Figure 4.3 illustrates a preferential looking study that tests infants’ knowledge
of solidity. A group of infants of approximately the same age is repeatedly exposed
to the following stimulus. A ball is falling down behind a screen. The screen is
lifted by the experimenter and the scene reveals a ball lying on the ground.

With every trial a decrease of looking time can be measured (figure 4.4). The
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infants lose interest in the event, because they know it already. This phase of the
experiment is also called the habituation phase.

In order to infer the infants’ knowledge of object solidity a platform is intro-
duced in the test phase of the experiment. If infants have a notion of solidity
they should expect that a ball that falls down and hits a platform will rest on
the platform. A violation of this expectation, i.e. a novel event, should lead to

an increased looking time.

Experimental

Habituation Consistent Inconsistent

Control

Habituation Testa Testb

Figure 4.3: Preferential looking study to test 4 month old notion of solidity
(source: Spelke et al. (1992))

Spelke et al. (1992) test two groups of children. Both groups are habituated
the same way. In every trial the infants see a ball falling down behind a screen.
Then the screen is revealed by the experimenter. To the first group of infants a
ball is shown resting on the top of the platform. To the second group of children
a ball is shown lying under a platform, hurting the principle of solidity, as if the
ball would magically pass through the platform.

The group of children that was exposed to the second inconsistent test case
showed an increase of looking time (see dotted line in the graph for mean looking
time in figure 4.4). Spelke et al. (1992) interpret this increase of looking time as

evidence that children in the age of 4 months have a notion of solidity.
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Figure 4.4: Mean looking times in an empirical study on object solidity
(source: Spelke et al. (1992))

In order to eliminate training effects or effects caused by the setup of the ex-
periment, an unhabituated group of children is tested as well. Preferential looking
studies appear under different names in the literature like “violation of expectation
method” or “visual preference for novelty method” (Baillargeon, 2004a; Rochat,
2004). They have been used to verify concepts of object solidity with infants a
few days after their birth. The method is also suitable for testing adults. Fur-
ther studies tested infants knowledge of collision, occlusion, containment, inertia,
gravity, and other events (Spelke et al., 1992; Hespos and Baillargeon, 2001a,b;
Baillargeon, 2004b; Luo and Baillargeon, 2005; Rochat, 2004). Older children
have been tested using alternative methods such as: the observation of predic-
tive hand reaching (von Hofsten et al., 2000) , neuroscientific methods (Johnson,
1999), and early word studies (MacWhinney, 2000). The following table lists
investigated spatial phenomena.
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Table 4.1: Classification of empircial studies by spatial relations
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Three sections are dedicated to empirical studies about the occlusion, con-

tainment and support of solids. The studies exhibit the sequential development

of knowledge. This development will be modeled as sequences of theories.

All studies use the violation of expectation paradigm. The researcher assumes

that the infant holds an expectation, in the terms of this thesis a theory about

the occlusion, containment and support of solids. A violation of this expectation

leads to an increased looking time in the studies.
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4.2 Occlusion of Solids

Objects that magically disappear in space have been in the center of psychological
research for decades. The permanence of objects has been investigated, i.e. the
question if children maintain a representation of objects when they are out of
sight or hidden by another object - an occluder.

An object that moves behind an occluder gets hidden. Adults have knowledge
about spatial relations between stationary objects. They assume that objects
have properties and they know laws that rule the movement and perception of
objects. Based on this knowledge they can predict when an object will be visible
to the observer. They can explain when an object disappears and reappears
(Gopnik and Meltzoff, 1997).

Children do not possess the same knowledge as adults. Many studies have
been carried out to investigate object permanence in infancy. There is evidence
that the concept of object occlusion is acquired in the first ten months of life (Luo

and Baillargeon, 2005). Within the studies two research questions are addressed:

e When is an object that reappears from behind an occluder the same object

that disappeared?

e When is an object behind an occluder hidden?

Figure 4.5: Test stimuli for occlusion of an object

(source: Aguiar and Baillargeon (1999))

Empircial studies that investigated whether children expect an object to be
hidden when moving behind an occluder have been carried out by Baillargeon
and collaborators. Different types of occluders have been used to test if young
infants expect an object to be hidden behind an occluder (see figure 4.5). The
violation of expectation method was applied for testing. The following results
were revealed.

With 2.5 months children seem to distinguish objects just based on the spatial
relation behind. In the empircial study they seem to ignore windows in the oc-

cluder, as well as the height and width of the occluder. A window in the occluder
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is not recognized before the age of 3 months. Infants expect a higher object to
be hidden behind a lower occluder with about 3.5 months. But expectations
about wider objects not being hidden behind smaller occluders do not appear in
the studies before the age of 7 months. Figure 4.6 shows the stimuli for testing
whether infants know that a wider object should be hidden behind a windowless,
taller (in height), smaller (in width) occluder.

The upper photo series (figure 4.6) shows a solid object that is narrower than
an occluder. In the second upper photo a screen is set up and the object is
lowered. The third upper photo shows the object hidden behind the occluder.
The series illustrates the physically possible outcome of a hiding operation.

The photo series in the figure below shows an impossible outcome of the
operation carried out. In the first photo below it can be seen that the object
behind the occluder is wider than the occluder. In the second photo a screen is
set up and the object is lowered. In the third photo the object is shown hidden
behind the occluder. The series illustrates the physically impossible outcome of
a hiding operation.

If children show a sign of surprise when exposed under controlled conditions
to the second series of stimuli then developmental psychologists infer that infants
consider width as an occlusion constraint. Infants younger than 7 months are not

surprised when exposed to the impossible stimuli presented here.

Figure 4.6: Testing the width of an object as occlusion variable

(source: Renee Baillargeon - infant cognition lab,

http://www.psych.uiuc.edu/ “rbaillar/ICL/welcome.html)

Transparency as an occlusion variable is considered at around 7.5 months of

age. It is up to the age of a year that children can predict when a moving object
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that disappeared behind an occluder should reappear on the other side based on
judgments about the speed of the object and width of the occluder (Mareschal,
2000). Table 4.2 summarizes these findings.

age
percept expectation (months)
B occludes A if
spatial relation A is behind B <25
Structure of solid
(doorways and B has no window 3
windows)
height of solid height A < height B 3.5
width of solid width A < width B 7
transpar'e ney of B is not transparent 7.5
solid

Table 4.2: Solid Occlusion Theory Sequence

4.3 Containment of Solids

Although the mouth may be one of the first containers that is experienced, the
development may be slow due to the difficulty that arises when connecting the
self to the external world. A number of studies have been carried out using the
violation of expectation paradigm. Empirical studies about infants ability to
distinguish between objects that can contain and those that cannot, motivate a
sequence of theories (Hespos and Baillargeon, 2001a,b; Baillargeon, 2004a; Hespos
and Spelke, 2004).

Within the studies two research questions are addressed:

e When is an object that reappears from inside a container the same object

that disappeared?

e When is an object inside a container hidden?

Infants at the age of 2.5 months already seem to know that solids that have an
opening may act as containers (Hespos and Baillargeon, 2001a), as well as that

a solid in a container shares the movement with the according container. The
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width of an object is not considered as a containment variable before the age of
4 to 6 months.

Another series of studies has been carried out to reveal prelingual knowledge
with infants about containment (Hespos and Spelke, 2004). Concepts of space
do not necessarily have to be reflected in the language we use. Objects that can
be moved inside a container may be distinguished between objects that cannot
be moved inside a container. Korean adult speakers use the verb “kitta” focusing
the movability of solid objects (tight-fit) while English adult speakers focus the
containment relation of the involved solids (Choi et al., 1999). Figure 4.7 illus-
trates the difference of a loose-fit container on the left side vs. a tight fit container
event on the right side. This functional distinction between loose-fit and tight-fit
containers is not supported in the English language although adults show looking
behavior according to both concepts in violation of expectation studies (Bloom,
2004; Hespos and Spelke, 2004).

1

Figure 4.7: Loose-in vs. Tight-in Containment
(source: Hespos and Spelke (2004))

Empirical studies have shown that both English and Korean five month old
infants can perfectly maintain the difference between “loose-fit” and “tight-fit”
containers. After repeated presentation of a tight-fit container subjects have been
exposed to a loose-fit container (or vice versa). An increase of spontaneous looking
time has been observed indicating that subjects distinguish between both types
of containment (Hespos and Spelke, 2004). Hespos and Baillargeon (2001a,b)
further revealed that infants younger than 7.5 months are not surprised when

exposed to the impossible stimulus presented in figure 4.8.
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Figure 4.8: Violation of expectation study to test height as a constraint in con-
tainment events
(source: Renee Baillargeon - infant cognition lab,

http://www.psych.uiuc.edu/ rbaillar /ICL/welcome.html)

In a series of violation of expectation experiments 7 months old infants have
been tested under controlled conditions when they expect a taller object to be
hidden in a smaller container. If infants know that height constrains the con-
tainment of an object they should be surprised by the outcome of the operation
illustrated in figure 4.8. If they do not consider height as a constraint of occlu-
sion events they should not show signs of surprise when observing the operation
carried out shown in figure 4.8. The latter was found with infants 7 months old.
Hespos and Baillargeon (2001b) interpret the results of the studies such that 7.5
months old children consider height as a containment variable.
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expectation age
percept A is in B if (months)
movement of A shares movement 95 35
solid with container B o
opening of solid B has an opening 2.5, 3.5
width of solid width A < width B 4-6
movement and movability of A inside 5
spatial relation B
height of solid height A < height B 7.5
transparency B is not transparent 10

Table 4.3: Solid Containment Theory Sequence
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The developmental sequence of a containment theory for solid objects is sum-

marized in table 4.3. It is not before 10 months that infants anticipate a contained

solid to be visible in a transparent container (Baillargeon, 2004a).

4.4 Support of Solids

Children start very early to observe that objects fall down such as pacifiers, teddy

bears, and bottles. Empirical studies have been carried out testing the knowledge

about the support of objects (Baillargeon, 2004b). The violation of expectation

paradigm (Luo and Baillargeon, 2005) has been used again. Within the studies

the following research question is addressed:

e When is an object supported by another object?

Figure 4.9: Stimuli for the object support experiments

(source: Baillargeon (2000))

Figure 4.9 illustrates the stimuli used in the empirical studies. On the top

left side of the figure an object is released in midair and does not fall. Infants as
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young as 3 months are surprised by this event indicating that they have a notion
of object support. On the top right side of the figure the two objects have contact
via their side surfaces. Though adults would not conceptualize this situation as
object support, infants younger than 4.5 to 5 months do not show any sign of
surprise when object B does not fall (Luo and Baillargeon, 2005). After that
they consider that the supporter has to have contact on the top surface with the
supported object.

With 5.5 months infants start to distinguish between objects that are movable
on the supporter via objects that are not movable when put on another object,
such as a ring on a zylinder (see figure 4.10). The behavior could be observed
with infants that grow up in Korean speaking environments where the relation is
distinguished by language. Although the distinction is not supported in English
speaking environments, English infants distinguish between loose-fit and tight-fit
supporters (Choi et al., 1999; Hespos and Spelke, 2004).

Figure 4.10: Loose-in vs. Tight-in Containment
(source: Hespos and Spelke (2004))

With 6.5 months infants detect that object support is also dependent on the
amount of top contact as illustrated in figure 4.9 on the bottom left. A further
series of experiments gives evidence that around 12.5 months old children will
also consider the shape (see figure 4.9 bottom right) of a solid to have influence
on the support relation. The test case can be seen on the bottom right of the

figure 4.9. Table 4.4 summarizes the findings.
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ercent expectation age
p p A is ON B if (months)
- A has contact with B <=3
type of contact A has contz}%sct on top of 4.5-5.5
movement A is movable on B 5.5
amount of contact A B
amount of .
contact > experienced 6.5
threshold
shape of shape of B supported 125
supported solid by A '

Table 4.4: Solid Support Theory Sequence

4.5 Theory Change

The presented empirical studies serve to support the hypothesis of the thesis that
spatial theories can be described by algebraic specifications and that change can
be modeled by adapting the axioms of the algebraic specifications. An adaptation
is not as radical as a change. It makes a theory fit to the observations of the
environment. In order to adapt a theory three mechanisms of theory change will
be introduced in the following section. The mechanisms have been found in the

empirical data previously presented.

4.5.1 Specialization - Detecting Constraints

The developmental sequence for the support of solids presented in section 4.4 lists
more and more constraints. An initial theory of solid support considers firstly
just the contact between the solids. An advanced theory for solid support can be
gained by distinguishing between the type of contact. A solid is just supported
if it contacts the supporting solid on the top surface. The axiom “A has contact
with B” is extended to the axiom “A has contact with B and A has contact on
top of B”.

Figure 4.11 illustrates how the simple theory is extended by adding an axiom.
“+” and “-” indicate the truth value of the axiom. “+” stands for true while “-”
stands for false. Further constraints are a consideration of the amount of contact,

and the shape of the supported solid object.
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Theory for the Support of Solids

Z, / N / AN
Contact+, Contact+, Contact+, Contact+,
hasTopContact- hasTopContact+ hasTopContact- hasTopContact+
¥/ AN
Special Theory for Support of Solids Contact+, ontact+,
hasTopContact+, hasTopContact+,
SupportiveAmount,/ \SupportiveAmountt,

Special Theory for Support of Solids
Figure 4.11: Specialization of a theory

Figure 4.11 further shows that a specialized theory can be won by adding an
axiom to the current theory. The step of adding an axiom with further constraints
will be called a specialization step in the course of the thesis. Table 4.5 illustrates

the specialization steps in the theory sequence for the support of solids.

axiom - age CONCEPTUAL
PERCEPTION A is ON B if | (months) CHANGE
A has contact
Contact with B <=3
A has contact SPECIALIZATION
Type of contact on top with B 4555 Top and side contact
amount of SPECIALIZATION
Amount of contact A B > 6.5 amount of contact
contact experienced ' supportive and
threshold unsupportive

Table 4.5: Theory Sequence for the Support of Solids by Specialization

The empirical data for the occlusion of solids also point to the mechanism
of specialization. An excerpt of the theory sequence is summarized in table 4.6,
the full sequences can be found in the appendix of the thesis. The sequence of

occlusion theories emerges through subsequently adding more and more axioms.
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axiom - A is
PERCEPTION | occluded by
B if

- A is behind B <25 -

Structure of

age CONCEPTUAL
(months) CHANGE

occluder B has no SPECIALIZATION
(presence of . 3 .
windows no Window B
doorways and
windows)
height of the SPECIALIZATION
objects involved A<B 35 A<B

Table 4.6: Theory Sequence for the Occlusion of Solids by Specialization

Both theory sequences motivate the introduction of a specialization step. The
specialization of a theory is the adaptation of one of its axioms by adding further
constraints. The theory is split into two specialized sub-theories. In summary a
theory can be constrained by adding subsequently more axioms to it. Change is
achieved by considering a further constraint. The changed theory will be called

a specialized theory.

4.5.2 Generalization - Detecting a Special Case

Having acquired specialized theories it motivates the introduction of generalized
theories. Generalization is defined - following the definition of induction in the
problem solving literature - as the combination of particular instances through
observation to more general laws. Induction tries to find regularity and coherence
between observations (Polya, 1973). An example in the history of science is
the detection of non-Euclidean geometries that made the Euclidean geometry a
special case of more general geometries (see discussion in section 2.2.1).

Evidence for the generalization of theories could also be found in the empirical
data. A generalization step deletes an axiom of a theory to generate a more
abstract theory. Special cases can be won by carrying out specialization steps
on the general theory. The generalization of a theory will be illustrated by two
examples.

The theory of occlusion advances through several specialization steps until
the detection of transparency. Until then the theory for the occlusion of solid
objects can generate an expectation about a hidden object considering the spatial

relation behind, windows in the occluder, and the size of the involved objects.
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Transparent objects will lead to contradiction. Although a solid object is behind
a bigger, windowless occluder it can be still visible, due to the transparency of

the occluder.

General Theory of Occlusion General Theory of Transparent Solids
isBehind+,
hasWindow-, isTransparent+
Biagart
/ isBigger-
isBehind+, isBehind+,
has Window-, hasWindow-,
isBigger+, . isBigger+,
isTransparentt sTransparent-
Special Theory for Transparent Solids Special Occlusion Theory for * Special Theories constrained by
Non Transparent Solids material properties of solid

Figure 4.12: Generalization Step in Theory Sequence for Object Occlusion

With the detection of transparency the current theory can be identified as a
special case for non transparent occluders. The current theory (figure 4.12 top)
is a general theory for object occlusion having two specialized theories for trans-
parent and non transparent occluders (figure 4.12 bottom). The transparency of
solid objects can again be defined as a new general theory that depends on the
material properties of the solid.

A second example for the generalization of theories is the detection of mov-

ability under a spatial relation. As pointed out in section 4.3 the containment of
a solid object may be defined through the opening of the container, the shared
movement of container and contained solid object and the size of the involved
objects. The distinction of loose vs. tight fit containers requires the detection of
motion inside the container.
A theory that describes a movable solid object inside a container is a special case
of a more general theory of containment (see figure 4.13). The theory can predict
when an object is inside a loose-fit container but it does not suffice to anticipate
tight-fit containment. In order to obtain a general theory about containment
the “movability axiom” has to be deleted of the loose-fit container theory. The
general theory of containment can then be specialized with a new axiom towards
a theory of tight-fit containment.

Figure 4.13 illustrates the generalization step for a containment theory se-
quence of solid objects. The specialized theories can be transformed to a more
general theory by deleting an axiom. The general theory can be again specialized

by adding another axiom. The movability of an object can be defined in a new
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general theory depending on the spatial relation of the involved objects and their

physical properties.

General Theory of Containment General Theory of MovableSolids

isOpen+,
sharesMovement+, Moveable o1 02
isBigger+
isOpen+. isOpen+,
sharesMovement+. sharesMovement+,
isBigger+, isBigger+,
Moveablelnside+ Moveablelnside-

* special theories constrained by spatial relation
Special Theory of Loose-Fit Containment Special Theory of Tight-Fit Containment

Figure 4.13: Generalization Step in Theory Sequence for Object Containment

Theory sequences - as described in the present section - motivate the intro-
duction of a generalization step. A general theory can be won by the deletion of
the axiom of a special theory. Change is achieved by omitting a constraint. The

changed theory will be called a generalized theory in the course of the thesis.

4.5.3 Weighting - The Importance of a Theory

Weighting is a crucial mechanism that explains the coexistence of several theories.
Naive theories are not replaced but rather fade out by using weights. Dynamic
weighting allows to describe how the infant can hold several theories at a time
and switch between them. Here a weight is defined as the ratio of successfully
predicted to totally observed actions in the environment.

Figure 4.14 explains how the weights can influence the choice of a naive theory.
The importance of the theory, i.e. its weight is indicated by the size of the
surrounding ellipses in the figure. On the left side the case of solid object support
is illustrated whereas the right side shows solid object containment.

The presented empirical data point to developmental sequences, e.g. (Bail-
largeon, 2004a), that are in accordance with the figure. Some sequences can be
influenced by specially designed learning trials, which again points to a weighting
mechanism. Generally children learn first that contact is important for object
support then they learn that the type of contact is important, followed by the
consideration of the amount of contact. The theory that uses just the contact

information to predict the support of two solids will lose importance after a while
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so it is weighted lower than the theory that considers contact and type of contact.
On the left side of figure 4.14 a snapshot of theories is shown at a timepoint where
the theory for solid object support explains best operations in the environment
that are dependent on the parameters of contact, type of contact and amount of

contact.

sharesMovement+
Contact+, Contact+, isBigger+
hasTopContac! hasTopContact+
N\

Contact+,
hasTopContact+,
SupportiveAmount+

isOpen+,

AN
AVAVA

Contact+,
hasTopContact+,
upportiveAmoun;

isOpen-+,
sharesMovement+,
isBigger+,
Moveablelnside

isOpen+,

sharesMovement+,
isBigger+,

Moveablelnside+

Figure 4.14: Weighting of a theory

On the right side of figure 4.14 the weighting for theories on solid object
containment is illustrated. The snapshot shows a timepoint where the agent
holds a theory for containment that depends on the opening of the container,
the shared movement and the size of the involved objects. The agent also holds
two specialized theories that additionally depend on the movability of the object
inside. Both specialized theories have lower weights (smaller ellipses in the figure)
than the general theory of solid object containment. The figure also shows that
the loose-fit containment theory (movability in the container) has been more often
observed than the tight-fit containment theory.

With a dynamic weighting mechanism a gradual theory revision can be de-
scribed in dependence on experience infants made in the environment. Infants

[13

may receive evidence that lead to “wrong means-end relations” . They could
generate a theory like all objects that taste like strawberry fall down. Such a
theory may be supported for some time by tasting falling strawberries but the
major part of evidence in the environment will point to unsupported objects that
fall down. The “strawberry” theory will gradually fade out. Note that it still
continues to exist and may be reused at a later point of time.

The mechanism of weighting has been identified in the empirical data as a
method to assign importance to a theory and facilitate its choice. The weight
determines the importance of a theory by comparing the successfully predicted

with the totally observed actions carried out in the environment. Theories with
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high weights fit better to the agents current observation data than those with

lower weights.

4.5.4 Summary

The empirical studies point to three mechanisms of theory change.

1. Specialization considers a new influential parameter. A theory is special-
ized by constraining it through an axiom. The axioms constrain the theory
to a special set of sorts and operations. The more axioms are added the

fewer sorts can be described by the specialized theory.

2. Generalization is an abstraction step. A theory is found to be a special
case of a more general theory. A number of other special theories may exist
that can be derived from the newly created generalized theory. Coexisting

theories are special cases of generalized theories.

3. Dynamic Weighting is a mechanism to assign importance to a theory.
Theories with higher weights are favored to those with lower weights. Belief
revision is the result of the dynamic weighting mechanism that assigns a

higher weight to a previously low weighted theory.

4.6 Lattice of Infant’s Theories

The mechanisms presented in the previous section serve to connect theories in
a partial ordering, specifically a lattice. Recently Frank (2006) proposed a tax-
onomic lattice of distinctions, the idea is here extended to axioms. The novel
contribution is a weighting mechanism based on observations of the environment
in combination with a lattice. The infant’s theories are described in a weighted
lattice. I am going to give examples how weighted lattices describe theories the
infant holds.

In order to store all naive theories an infant can hold each node in the lattice
corresponds to a theory. The agent holds a theory of object containment, and
after observation the agent builds theories for loose-fit and tight-fit containers.
These are combinations of the containment and movability theories that can be
built by joining operations. Further evidence may point to more general theories

that can be built by meeting operations.
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Not all theories created in that way are useful. I distinguish three types of
theories: absurd, plausible and established theories. Absurd theories can never
be observed in the environment, such as a theory of an object being contained
and not contained at the same time ({isIn+,isIn-}) or the bottom theory of the
lattice that fulfills all axioms at the same time. Absurd theories exist but will
not receive evidence and have therefore weight 0 (figure 4.15).

Plausible theories are theoretically possible theories but their occurrence has
not yet been observed. Every observation will increase the weight of the theory.
An observed theory has been given evidence through observations in the environ-
ment. An object is inside another object and movable. Plausible theories have
a low weight, such as the theory of non movable objects in a container in figure
4.15 ({isIn+,isMoveable-}).

Established theories have strong evidence. They have been observed fre-
quently, such as an object being movable {movable+} or inside another {in+}.
Therefore these theories have a high weight, indicated by the bigger ellipses in
figure 4.15. Theories with higher weights are preferred to theories with lower

weights and guide the construction of new theories.

0
() = o

isIn-, isIn-,
. isMovable+, isMovable- .
isin+, isMovable+,
isMovable-

~_ ~ ~ T~

isin+,

. . isMovable+
isln+, isIn-

isln+, isln-, isln+, isln-, isln+,isMovable+, isln-, isMovable+,
isMovable+, isMovable- isMovable- isMovable-
isln+, isIn-
isMovable+,
isMovable-

Figure 4.15: Lattice of loose-fit and tight-fit container.

In summary three mechanisms identified in the empirical data of this chapter

lead to a weighted lattice of naive theories.
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1. A specialization step is movement down in the lattice of theories.
2. A generalization step is a movement up in the lattice of theories.

3. Setting weights in the lattice of theories determines the importance of a
theory as a basis to choose between several competing theories and to model

gradual theory revision.

Starting with m pairwise mutual exclusive inputs one ends up with n = 2*m
inputs. The lattice would then have 2" elements. The problem of computability
arises. However there is some empircial evidence that infants learn domain spe-
cific. Furthermore I assume that the number of possible elements is constrained
by affordances. Thus the number of contributing elements in such a lattice is

small.

4.7 Summary

Empirical studies of developmental psychology have been presented to identify
mechanisms to build sequences of spatial theories. The studies are based on the
violation of expectation paradigm. It assumes that infants generate beliefs out of
their knowledge about the physical world. Infants hold theories about the world
(Gopnik and Meltzoff, 1997; Gopnik et al., 1999; Meltzoff, 2004).

The infants react with measurable signs of surprise whenever exposed to novel
stimuli. Different stimuli contradicting common-sense knowledge about the phys-
ical world are presented to the infants at different stages of age. A sign of surprise
proves the developmental psychologist that infants have a notion about the tested
knowledge. So developmental sequences for the support, occlusion and contain-
ment of solids are identified.

I used these sequences to generate naive theories about the support, occlu-
sion and containment of solids. During the modeling process with the empirical
data three theory changing mechanisms could be identified. Specialization steps
constrain theories by adding more axioms. Generalization steps change theories
by deleting axioms and adding new specializations. Weighting serves as a mech-
anism to assign the importance to a theory in the light of evidence provided by
the environment.

The three mechanisms serve to build weighted lattices of naive theories. The

following chapter 5 will provide an abstract model for theory change triggered by
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the environment. The model will be used to carry out simulations based on the

empirical data described in this chapter.



Chapter 5

Abstract Representation - A
Model in Haskell

The following chapter verifies the hypothesis that spatial theories can be described
by algebraic specifications and that a change mechanism for new theories can be
based on the adaptation and weighting of axioms. The algebraic specifications
serve to provide a formal model of a theory driven agent. The agent’s mental
model is based on theory sequences conforming to the theory theory of cognitive
development.

Theories are described by algebraic specifications (for details see appendix).
As they are based on constructive axioms it has been suggested to say model
based (executable) specification method, rather than using the term algebraic
specifications. The purely functional programming language Haskell has been
used to implement the specifications. Three mechanisms have been formally

modeled with the empirical data presented in the previous chapter:

e Specialization: Adding a new instance, i.e. a specialized theory to an ex-

isting class.

e Generalization: Adding a new class, i.e. a generalized theory. In order to
use the general theory an instance has to be created. For all new theories

that can be derived from the generalized theory instances have to be added.

e Weighting: Calculating the weight of a theory, i.e. counting successful

anticipations vs. observations of operations in the environment.

65
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These mechanims served to implement a theory driven agent that observes the
outcome of operations in an environment. The agent advances through sequences
of spatial theories. The agent’s mental model is based on two theory forming

cycles that are described by a sequence of observe-test-build-use functions.

5.1 Theory Driven Agent and It’s Operations

The current model represents the internal operations of a theory driven agent.
Although the agent model is very simple it can be shown how theories can be
chosen based on observations of an environment. The model has been tested with
empirical data in a simulation in chapter 6.

Each theory driven agent has a unique identifier. The agent holds observations
made in the environment, a list of current theories, and a list of all possible
theories, called the potential. The potential is necessary to make the agent learn.

The current model does not build theories automatically.

data Agent = Agent ID Observation Theories Potential State
data State = Observe | Build | Test | Use | GiveUp deriving (Show,Eq)
type Potential = Theories

The agent has been implemented as a finite state machine (see figure 5.1). One of
the four states: Observe, Build, Test, Use determines the agent’s next step
in order to carry out sequences of mental actions. The state transition diagram in
figure 5.1 illustrates how the agent advances through different theory constructing
episodes.

Each episode has a starting point with high interest into the problem domain
and an ending point with low interest into the problem solving domain. The
end point or point of low interest is reached when the agent found a satisfying
explanation, i.e. a theory that explains the environment or when the opposite
happens namely the agent is unable to find a theory that fits the observations of
the environment. The starting point of the diagram can be interpreted as high
interest into a domain under investigation towards the end point of the diagram,
that stands for a timepoint having low interest into the domain of investigation.

Currently this research focuses on describing redescription of spatial theories
rather than modelling the agent’s emotional and attentional parameters. There-
fore currently measures for the level of interest, attention and the level of frus-
tration have not been cosidered in the agent’s model. Extensions are possible in

future models.
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observe the environment

BSERVE}€ observe the environment

)

test new observations
with current theories
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_) use available theories

build a new theory

stop because no
new observations

test new theory

stop because unable
to build a new theory

Figure 5.1: State transition diagram for the agent

The agent starts by observing the environment holding a simple theory. The
newly observed data are tested with the simple theory the agent holds. If the
theory can explain the observed data the agent continues to use the simple theory
and observes the environment until no new data arrives into the model.

If the theory does not fit the observed data the agent will try to build a new
theory based on the perceived input and the old theory. The old and the newly
built theory are then tested with the previously observed data. If the observed
data conforms the new theory the agent continues to use the simple theory and
observes the environment until no new data arrives into the model.

In the case that the new theory does not fit the observed data the agent loops
back to the build theory state. If the agent can not build a new theory the model
stops. Building a new theory has not been implemented in the present model. It
could be based on a deterministic or stochastic inferencing engine.

The current research concentrates on describing the overall process of testing
theories. The implementation of a theory inferencing engine is future work. At
the present theories are selected from a set of possible theories that have been
hard coded. The hard coded theories are the agent’s potential. This is what the
agent could learn if it perceived observations that lead to theory change.

The following four sections describe the mental operations of the agent in
detail. The agent utilizes an observe-build-test-use cycle that makes it advance

through sequences of theories given observation data from the environment. This
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has been motivated by previous work of Siegler and Chen (2002). The agent’s

actions are a reaction to observations of the environment and beliefs generated.

class Agents ag where

observe :: Observation -> ag -> ag
buildTheories 1 ag —> ag
testTheories 1 ag > ag
useTheories 11 ag -> ag

5.1.1 Observe Function

The agent observes the outcome of operations carried out in an environment.
These observations are described in the model in an abstract form. Generally an
observation is described by a data type consisting of a list of affordances and a
list of experiments.

The affordances are modeled using strings. They serve to connect the obser-
vations to the appropriate theory in a simple matching process. The observations
coupled with affordances control which theories will be chosen out of the agent’s

memory.

Observation = 0 [Affordance] ExpSerie deriving Show

An experiment involves two objects and the outcome of the experiment. The
outcome of the experiment is modeled as a Boolean variable. The mapping to
Boolean values is in accordance with observations of psychologists that found
across languages that young children verbalize success (“There”, “Done it”, “Good”)
and failure (“Oh dear”, “no”) Gopnik and Meltzoff (1997).

type Exp = (0bj,0bj,Bool) -- an experiment

type ExpSerie = [Expl -- a series of experiments

The agent’s observe function serves to internalize the observations made in the
environment into it’s mental model. The observation function has influence on
the state of the agent. Depending on the amount of information that arrives into

the agent’s internal memory, the agent will change it’s internal state.

observe (0 aff [1) (Agent iD o t p s) = (Agent iD (0 aff []) t p GiveUp)
observe exps (Agent iD o t p Observe) = (Agent iD exps t p Test)
observe exps (Agent iD o t p Build) = (Agent iD o t p Build)

Initially an agent is in the state Observe. An agent that receives data from

the environment will change it’s state to Test. The new data have to be tested



Chapter 5 - Abstract Representation - A Model in Haskell 69

with the theories that are held in the agent’s mental model. However if the agent
receives no input from the environment it cannot test it’s theories and will change
the state to GiveUp. An agent that is in the state Build has no need to acquire
new observations. An agent that is in the state Build tries to build theories. The
agent therefore has no need to acquire other types of observations. The agent
will firstly resolve the conflict generated by previous observation types in a theory

building process and continue to observe new information at a later point of time.

5.1.2 BuildTheories Function

An agent that is in the state Build tries to build theories. This happens whenever
the observations of operations in the environment stand in contradiction with
expectations derived from theories (beliefs). The changes between the theories
have been classified, but will not be carried out automatically by the model. This
step could be done in future work by an inference machine based on many-valued
logic or stochastic reasoning. Instead I provide all the possible theories an agent
can have and the agent chooses among them based on affordances given by the

environment.

buildTheories (Agent iD o t p Build)

Inewt == [] = (Agent iD o t p GiveUp) -- error
|otherwise = (Agent iD o (t++newt) p Test) where

t’ = [ptlpt<-p, (inSide (getObsAff o) (getTAff pt))]

newt = [nt|nt<-t’,not (elem nt t)] -- new theories

buildTheories ag = ag

The decision to store the affordances with the theories has been made due to
model simplification. I do not implement a multiple belief reasoner in this re-
search. The affordances that come with the input data to the model are utilized
to match the appropriate theories that are hard coded. The affordances serve
to match theories to perceived inputs. The building process is here reduced to

choose a finite set of theories among all available theories.

5.1.3 TestTheories Function

The task remains to choose the appropriate theory and test its usefulness. By a
dynamic weighting mechanism theories are graded. The gradation of the theories
changes the state of the agent. An agent that is successful in testing a newly

acquired theory changes it’s state to Use. An agent that unsuccesfully tests a
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theory will change it’s state back to Build. The agent tries again to find another
explanation, i.e a theory. This process is iterative if the agent cannot find any

theory that explains the observed data it will set it’s state to GiveUp.

testTheories (Agent iD o t p Test) = (Agent iD o wt p newState) where
newState = determineState wt
-- weighted theories
wt = [(T i a op (eval-
Exp op test data’))|(T i a op w)<-t]
-- create as much test data as theories
test datam = replicate (length t) test data’
test data’ = getExpSerie o

testTheories ag = ag

The code sample above illustrates the testTheories function. The function
creates multiple copies of the observation data for each theory in the memory of
the agent. The set of observation data is used to test the current theories in the
memory of the agent. The implementation of this evaluation step is described in

the following section.

5.1.3.1 Evaluation Method

The agent observes the execution of operations in the environment and compares
them with beliefs generated from theories. The agent can distinguish between

four types of theories. In terms of a four valued logic (Belnap, 1977):

e Theories can be true or false. The agent has to acquire test data in order

to evaluate the theory’s usefulness.

e Theories can be only true. The agent can infer that the theory fully explains
the observed test data.

e Theories can be only false. The theory received no positive evidence, but
it is still kept in the agent’s memory as some other data may verify the

theory.

e Theories can be both true and false. The agent needs has to adapt the
theory as some elements of the theory’s axioms do not predict outcomes of

operations well enough.

A mechanism that is purley based on logic (cf. (Bower, 1989)) seemed too rigid to

model theory change. The immediate rejection after one falsification of a theory
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contradicts Kuhn’s (1962) resistance against theory change that could also be
observed with infants (Gopnik and Meltzoff, 1997). Therefore the evaluation of
the theories is based on a dynamic weighting mechanism. Dynamic weighting
allows to model gradual theory change and has been proposed in the cognitive
science literature (see Regier (1996) or Newcombe and Huttenlocher (2003)).
class (Show a, Show b) => Evaluation a b where
testExp :: a -> b -> b

testExps :: a -> [b] -> [b] -- Evaluates a series of experiments
testExps f e = map (testExp f) e

evalExp :: a -> [b] -> Float —-- Number of hits in an experiment is a

-- utility score -> 0.0 - 1.0

Actually the number of objects can be arbitrary. If an experiment type with
another number of objects is introduced an instance has to be added to the
evaluation class. The evaluation function has to be of the form [0]->Bool.

Evaluation of Experiments having two objects, mapped on an equivalence class
instance Evaluation (Object->0bject->Bool) (Object,Object,Bool) where

testExp f e@(ol,02,0observation) = (ol,02,evidence) where
evidence = observation == belief
belief = f ol o2

evalExp f e = no_hits / no_exps where
no_hits = fromIntegral (length hits)
no_exps = fromIntegral (length e)
hits = [(01,02,t)|(01,02,t)<-(testExps f e),t==Truel

The testExp function tests a single observation with a theory, it compares ob-
servations with beliefs and returns a Boolean value. The TestExps function has
been created to test a series of theories using the map function. Finally the eval-
Exp function counts successful hits vs. number of all trials and returns a utility
score for the theory between 0.0 and 1.0. A theory can have a maximal utility
of 1.0.

e Theories that are untested have a weight of 0.0.
e Theories that are always tested as false have a weight of 0.0.
e Theories that are always tested as true have a weight of 1.0

e Theories that are tested as true and false have a weight between 0.0 - 1.0
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When specialized theories start to oscillate around certain utility scores and the
weight for the previously existing generalized theory grows in the same extent then
a generalization step has to be carried out. I am going to show this behavior in
the simulation data in chapter 6. Theories that converge towards 1.0 should be

firstly specialized when new contradictions are detected.

5.1.3.2 Determine State Function

The weighting of the theory influences the agent’s state. Whenever one of the
theories can explain all the observed data there is no need for the agent to search
for a further explanation. The agent sets it’s state to Use.

determineState :: [Theory] -> State

determineState [] = error "Cannot find any theory that fits the given data."

determineState t
|any (==1.0) $ map (getWeight) t

Use -- no need to change

|otherwise Build -- try a better explanation

An agent that cannot perfectly explain the world will be set to the state Build.
The agent will try to resolve the conflicts out of the given data by combining the
contradicting percepts to new theories. The model uses a simple heuristic here,
but the focus is not on building the inference machine but to describe the overall
process of theory formation and validation.

The way how the calculation is done is not so important. The agent has
to be equipped with a mechanism to compare beliefs with observations and a
mechanism to score the theories. In the current implementation the weighting
mechanism does not treat positive feedback superior to negative feedback. This

remains to be done in future work.

5.1.4 TUseTheories Function

The useTheories function serves to start the next theory testing cycle, by either
setting the agent in the state Observe or by breaking the loop because no new
percepts are found. The function could be extended in future work to imple-
ment cognitive effects such as the strength of a stimulus or memory effects by
reweighting the theories after they have been tested and before a new cycle starts.
useTheories (Agent iD o t p s)
Is == Use = (Agent iD o t p Observe) -

apply theory to novel data
|s == Build = (Agent iD o t p Build) -= build a new theory
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|s == GiveUp = error "No percepts or theo-

ries found that fit the data."

The useTheories function can be extended in future work to consider measures for
the agent’s attention, the agent’s ability to memorize, and the emotional state of
the agent. E.g. Low attention could be modeled by decreasing weights of a newly
acquired theory with the useTheories function. This has been omitted because

the focus of the research is on the qualitative redescription of the spatial theories.

5.1.5 Simulation Function

The simulation function links the four mental operations of the agent. Intermedi-
ate results are connected to a result string. A time limit of two times the length
of the observation list constrains the model.

sim :: Time -> [Observation] -> Agent -> String

sim time [] ag = error "End of Simulation - no data in the environment"

sim time obs ag

|time > (2* length obs) = "Agent getting bored -
g g g g
no new data \n CHECK Simulation time limit"
|otherwise = show "Time: " ++ show (time’) ++ "\n" ++
" \n" ++
"observing environment ... \n" ++
" \n" ++

show (observe obs’ ag) ++

" \n" ++

"pbuilding theories ... \n" ++
" \n" ++

show (buildTheories $ (observe obs’ ag)) ++

n \nn ++

"testing theories ... \n" ++

" \n" ++

show (testTheories $ buildTheories
$ (observe obs’ ag)) ++
" \n" ++

"using theories ... \n" ++

" \n" ++
show (useTheories $ testTheories
$ buildTheories
$ (observe obs’ ag)) ++
" \n" ++

(sim time’ obs ag’) where
ag’ = useTheories $ testTheories
$ buildTheories
$ (observe obs’ ag)
time’ = time + 1
obs’ = (0 r_aff r_obs) -- reduce the data
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r_aff = take no_obs (getObsAff obs)
r_obs = take no_obs (getExpSerie obs)
no_obs = length (getExpSerie $ getObserva-

tion ag)

The simulation function is initialized with a timepoint, a list of observations, an
agent and returns a string that contains the result of the simulation at a later
timepoint. The agent advances through different states until a time limit exceeds
or no further input is given to the model. The simulation function is defined

recursively and invokes the chain of functions described above.

5.1.6 Summary

In summary a framework for testing sequences of theories in an environment has
been presented. The framework utilizes a single agent. The agent uses four mental
operations to advance through sequences of theories triggered by perceptual input
of the environment. The model stops to explore the environment in the following

situations:

e The agent repetitively observes the same type of data. The observation of
the environment does not yield a new theory. The buildTheories function
just builds theories that are already in the mind of the agent. The model
uses a time limit to exit this cycle. It can be interpreted as the agent being

bored leaving the experiment.

e The buildTheories function cannot match the perceptual data to a theory.
The observations of the objects in the environment do not afford any ac-
tions. No theory in the mind of the agent fits to the perceptual input data.
This can be interpreted as the agent being angry or frustrated because it

did not find any explanation.

In the following section the algebraic descripition of the theories and perceptual

data are given.

5.2 Formal Description of Theories and Testdata

5.2.1 Theories are Classes

Theories are specified using Haskell classes. The class specifies which operations

belong to a theory. A theory must have at least one expectation function in order



Chapter 5 - Abstract Representation - A Model in Haskell 75

to predict beliefs about the environment.

Classes cannot be used directly because they are abstract specifications. To
execute the model implementations have to be provided for the classes. This is
done via the definition of instances and data types.

A theory is described by a data type having a list of affordances. Affordances
determine which theories will be chosen among the possible theories. Affordances
are described by String types.

Furthermore the data type Theory consists of an operation that is carried out
in the environment. For the chosen examples it is a binary function that maps
two objects to an equivalence class. A weight, i.e. a floating type value describes
the importance of the theory. The value of the weight can be between 0.0 and
1.0.

type Affordance = String

type Operation = (Object->0Object->Bool)

type Weight = Float

data Theory = T [Affordance] Operation Weight deriving Show
type Theories = [Theory]

In the Haskell code theories are specified by classes having different implementa-
tions, i.e. instances. Each instance holds at least one expectation function that is
utilized to generate the agent’s beliefs. In order to hold the different expectation
functions within the same data structure partially initialized functions have been

implemented. For each new theory a data type Redescription has been defined.

data Redescriptionl = Rl deriving (Eq,Show)
data Redescription2 = R2 deriving (Eq,Show)
data Redescription3 = R3 deriving (Eq,Show)
data Redescription4 = R4 deriving (Eq,Show)
data Redescriptionb5 = R5 deriving (Eq,Show)
class Theory c o where

expect_fun :: r -> o -> o -> Bool

The expectation function expect_fun is implemented for each redescription (Haskell
instance) that is defined for a certain theory (Haskell class). Expectation func-
tions in the course of the thesis are: isIn, isOn and isOccluded. The data
type Redescription is used as an abstract identifier for the theory. With partial
initialization the appropriate implementation of a theory can be overloaded when
necessary. Partially initialized expectation functions can be managed within the

same data structure.
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instance Theory Redescriptionl Object where
expect_fun R1 ol 02 = 1st implementation
instance Theory Redescription2 Object where

expect_fun R2 ol 02 = 2nd implementation

-- data structure for partially initialized expectation functions
theory_list = [expect_fun Redescriptionl,
expect_fun Redescription2,

-]

5.2.2 Test data are functions

In order to test a theory in the current framework test data have to be provided.
These are percepts made in the environment. The current model describes per-
cepts as functions. The functions have been chosen in a way that they cause the
model to advance through sequences of theories.

The test data for the current model have to be opposite to the stimuli used
in the empirical studies described in chapter 4 of the thesis. Psychologists test
violations of expectations. The expectations have been build by observations
made previously. Because what the model learns depends on what the model
perceived before the test data have to desribe observations that were made before
the detection of the empirically tested violations.

The agent that detects a violation like an object that disappears behind a
transparent occluder has to have seen before many times that an object reap-
peared behind a transparent occluder. In the current model that is based on
dynamic weighting the number of observations pointing to reappearance have to
be higher than the number of observations that point to dissappearance when
object moved behind a transparent occluder.

The test data contain affordances. Affordances serve to provide the connection
between perceptual data and theories. The affordance guides which percepts
belong to a theory or which theory has to be chosen based on given perceptual
data.

The model is object based and the test data does not consider partial rela-
tionships between objects. In the test data an object is fully hidden or hidden not
at all. All objects treated in the model are in a table top space. The observations
of the objects are perfect, i.e. free of any erroneous influences.

The subsequent sections introduce formal theories for the occlusion, contain-

ment and support of objects. In order to carry out a simulation with a theory
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driven agent test data were created that caused changes in the theory sequences.
The agent advances from one theory to the other. The description of the theories

will always be followed by a description of the test data.

5.3 Occlusion of Solids

5.3.1 Theories

Empirical data that were described in section 4.2 served to build the available
Haskell implementation. The theory sequence for the occlusion of objects shows
how a theory is stepwise constrained by adding more and more axioms. The
number of possible test cases that fit to the world get more and more small.
The class occluder provides a specification for an expectation function isOc-

cluded that permits to predict whether an object is occluded by another object
given a set of percepts. The outcome of the operation is mapped on a Bool vari-
able. The first instantiation of the theory considers just percepts about an object
being behind another.

class Occluders r o where

isOccluded :: r -> o -> o -> Bool
-- 1st Theory: An object behind another is occluded.

instance Occluders Redescriptionl Object where

isOccluded R1 ol occ = isBehind ol occ

A second instantiation constrains the theory by adding an axiom. Beside the
spatial relation behind, a window in the occluding object is considered in the
theory. The object is occluded by the occluder when there is no window in the

occluder.

-- 2nd Theory: Occluders with windows do not work.
instance Occluders Redescription2 Object where
isOccluded R2 ol occ = isOccluded R1 ol occ &&

(not $ hasWindow occ)

The third instantiation considers the size of the objects. The object behind the
windowless occluder has to be smaller than the occluder in width and height in

order to be fully hidden. The theory is again spezialized by adding an axiom.

-- 3rd Theory: The size of the occluded object matters.
instance Occluders Redescription3 Object where
isOccluded R3 ol occ = isOccluded R2 ol occ &&
ol < occ
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Transparency creates a new general theory and splits the theory of occlusion
into two special theories. Objects that are not transparent are a special case
of a more general occlusion theory (Redescription3) that distinguishes between
transparent and non transparent occluders. The second special theory is triggered
by an object that has been observed behind a transparent occluder. It will always

be visible no matter if the occluder has a window or is smaller than the object.

-- 4th Theory: A transparent occcluder does not hide the occluded object.
instance Occluders Redescription4 Object where
isOccluded R4 ol occ = isOccluded R3 ol occ &&

isTransparent’ R2 occ

- GENERALIZING TO A NEW THEORY OF TRANSPARENCY

class Transparency r o where

isTransparent :: r -> o -> Bool

-- Theory of Transparency

instance Transparency Redescriptionl Object where
isTransparent’ R1 ol = isTransparent ol

-- Theory of nonTransparency

instance Transparency Redescription2 Object where

isTransparent’ R2 ol = not $ isTransparent ol

Finally movement also constrains occlusion. Moving objects are sometimes oc-
cluders and sometimes they are not. If the occluder is moved or the occluder and
the object do not share the same location the object behind the occluder is not
hidden.

instance Occluders Redescriptionb Object where
isOccluded R5 ol occ = isOccluded R4 ol occ &&

(not $ (moved occ && (not $ samePos ol occ)))

5.3.2 Test Data

The test data have been created so that they cause a conflict in the agent’s
mental model. The first test data set for the occlusion of a solid object consists
of an object behind another second object. The objects are treated as integers
in the implementation. Objects move behind others. They disappear before the
occluder and reappears unchanged on the other side of the occluder. This will be
in accordance with a theory that considers just the spatial relation behind. But

observations of objects that reappear in gaps between occluders will elicit a new
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specialized theory that also considers gaps and windows. This new theory may

be contradicted by the following test cases illustrated in table 5.1.

rede-

. ,. | 01|02 conflict picture
scription

R1 1| 2| behind .

expectation: behind ol 02 == True

R2 3 4 window 4

.{.Ju: w

expectation: hasWindow 02 == False

Table 5.1: Theory Sequence and test data for the occlusion of solids
The first example shows an object 1 that moves behind an object 2 being

shown in the gap between the objects (table 5.1 above). The second type of
observation is illustrated in table 5.1 below. Object 3 is moved behind an occluder
4 with a window, being shown in the window. Both cases can not be predicted
with a theory that considers just the spatial relation behind. As windows reveal
the objects that are behind a new theory is suggested that is constrained by the

spatial relation behind and the presence of windows.

e_occlusion = [(1,2,True)]

e_occlusionl = [(3,4,False)] -- contradict R1, conflict window
isBehind 1 2 = True
hasWindow 2 = False

isTransparent 2 = False

moved 2 = False
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samePos 1 2 = True

The new theory that considers the spatial relation behind and the presence of
gaps and windows will be revised with the detection of size. Objects that are
bigger than the occluding objects will be seen and objects that are smaller than
the occluder will be hidden. Table 5.2 shows above an object 6 that is hidden
behind a smaller object 5. The size of the integer value has been utilized as the
size of the object. More observations will point to smaller objects being hidden

behind bigger, windowless occluders.

re'd e-. ol | 02 conflict picture
scription
Lile || [Kdle
' 5 L L 6|
R3 6|5 size , L | =5d=6_ |
expectation - width: ol < 02 == True
p il 1M
R4 7 | 8 | transparency i ' @8 —
expectation: isTransparent 02 == False

Table 5.2: Theory Sequence and test data for the occlusion of solids

The naive occlusion theory will again be revised when tested with data shown
in table 5.2 below. The transparent object 8 will not occlude object 7. The
anticipation function of the occlusion theory will be in conflict with the illustrated

test case.
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5.4 Containment of Solids

5.4.1 Theories

The empirical studies in section 4.3 point to a simple theory for the containment of
solid objects that depends on the existence of an opening in the container object.
The algebraic description below defines an expectation function isIn considering
that fact. A second theory considers the shared movement of the container and
the contained object in its expectation function. In another specialization step
the theory advances to considering the size of the container and the contained

object.

class Containment r o where
isIn :: r -> o -> o -> Bool
-- 1st Theory: the container has to be open.
instance Containment Redescriptionl Object where
isIn R1 obj co = isOpen co
-- 2nd Theory: The object in the container shares the movement with the con-
tainer
instance Containment Redescription2 Object where
isIn R2 obj co = isIn R1 obj co &&
((not $ moved co) || (moved co &« samePosAfter obj co))
-- 3rd Theory: The contained object has to be smaller.
instance Containment Redescription3 Object where
isIn R3 obj co = isIn R2 obj co &&
(obj < co)

The perception of movement of the contained object inside the container leads to
a generalization of the theory. The according algebras are described below where
hasOpening (object) is a perception that determines whether the object has an
opening, the <’ operator compares the size of the objects and fit determines
whether the contained object can be moved inside the container.

The empirical data in section 4.3 point to a generalization step in the theory of
object containment. The distinction of loose-fit and tight-fit containers requires
to introduce new data types, classes and instances for the generalized theories.

The Haskell code below illustrates the specialization step.

-- Theory of Loose-Fit Containment
instance Containment Redescription4 Object where
isIn R4 obj co = isIn R3 obj co &&
fit R1 obj co
-- Theory of Tight-fit Containment
instance Containment Redescriptionb Object where
isIn R5 obj co = isIn R3 obj co &&
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fit R2 obj co

- GENERALIZING TO A NEW THEORY

-- Loose and tight fit containment require Fit as generalized super class
class Fit r o where
fit :: r -> o -> o -> Bool
instance Fit Redescriptionl Object where
fit R1 ol 02 = movable ol o2
instance Fit Redescription2 Object where
fit R2 ol 02 = not $ movable ol 02

Observation will lead to cases where the new axiom fit will be both verified
and falsified. Thus the theory for loose-fit container and the theory for tight-
fit container will receive alternating evidence dependent on observations in the
environment. The general theory of containment (Redescription 3) and the

new general theory of movability will receive support with each observation.

5.4.2 Test Data

In order to test the sequence of containment theories five types of observation lists
have been created, each creating a conflict that will lead to theory adaptation. As
the notation is abstract two tables illustrate the test cases. Integers have again
been used as a representation for solid objects. The model observes and predicts
the outcome of the visualized operations. The pictures show the violations that

should be detected by the model using the newly acquired theory.



Chapter 5 - Abstract Representation - A Model in Haskell 83

re.d e-. ol| 02| conflict picture
scription
R1 1 | 2 | opening
R2 3 | 4 | movement

R3 6 |5 size

expectation: ol < 02

Table 5.3: Theory Sequence and test data for the containment of solids

Frequent observations of objects that are put into a container will lead to a
theory that points to an opening of the container. Solid object 2 has an opening
(isOpen 2 == True) and the observation of the objects 1 and 2 leads to the
anticipation that 1 is in 2 which is in accordance with the observed outcome of
the operation.

Solid objects in containers share the movement with their container. This
observation will lead to a theory that does not only consider the opening but also
the shared movement of the objects. Although object 4 has an opening it does
not share the movement with object 3, the testcase contradicts the agent’s theory
of containment. Therefore object 4 is not a container or the theory of containers

needs to be adapted. The agent percepts are described by a set of functions such
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as isOpen o, moved o, samePosAfter ol 02, movable ol o2.

e_containment = [(1,2,True)]

e_containmentl = [(3,4,False)] -- contradict R1, conflict movement
e_containment2 = [(6,5,False)] -- contradict R2, conflict size
isOpen 2 = True

moved _ = False

samePosAfter 1 2 = True

movable 1 2 = True

It is not sufficient to specify a container by an opening and a shared movement.
An object that is bigger than the container will not fit into the container. The
test case in table 5.3 illustrates on the bottom the observation that leads to a
theory revision. Object 6 will not fit into object 5 and most often the model
will be confronted with observations of the form (6,5,False). Until the model
does not hold a theory that considers size as an important parameter for the
containment of objects it will not detect the violation shown in the figure that

represents a case of the observation (6,5, True).

rede-

. .. | 0l| 02| conflict picture
scription

R4 7 | 8 | loose-fit

R5 9 | 10| tight-fit

expectation: moveablelnside == False

Table 5.4: Theory Sequence and test data for the containment of solids

The movability inside the container is a percept that leads to theory gener-
alization. The perceptual data are extended to consider movement inside the
container via the function movableInside ol 02. Both observational data will
be provided to the model cases of observations (7,8,True) and cases of obser-
vations (9,10,False).
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5.5 Support of Solids

5.5.1 Theories

The Redescription for the support of solids is implemented as a sequence of
theories that goes through four specialization steps. The initial theory for object
support relies only on a very generic definition of contact. I discuss the code

below and explain the functions and introduced data types.

class Supporters r o where
isOn :: r -> o -> o —> Bool
-- 1st Theory considers just the contact between the objects
instance Supporters Redescriptionl Object where
isOn R1 ol 02 = hasContact ol o2

In a specialization step the theory of a generic contact will be transformed. A
new instance will be added that considers solids that touch via their top surface
implementing the hasTopContact ol 02 operation. It defines the type of contact
observed between two objects. Possible outcomes are the values True (objects
touch via top/bottom surface) and False (objects touch in another way, e.g. on

their side surfaces).

-- 2nd Theory specifies the type of contact
instance Supporters Redescription2 Object where
isOn R2 ol 02 = isOn R1 ol o2 &&
hasTopContact ol o2

Another specialization step transforms the theory for support of solids. The new
theory also considers the amount of contact. A new instance will be added the
considers not only objects that touch via their top surface but also the amount
of contact between the objects. The operation getAmountContact ol o2 is a
perception that determines the amount of contact between two solids in the en-

vironment.

-- 3rd Theory considers the amount of contact
instance Supporters Redescription3 Object where
isOn R3 ol 02 = isOn R2 &&
getAmountContact ol o2
—-- 4th Theory considers the shape of the supported object
instance Supporters Redescription4 Object where
isOn R4 ol 02 = isOn R3 &&
getShape ol 02
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The 4th theory is further constrained by the shape of the supported object. A
distinction between supportive and non supportive shapes leads again to theory
specialization. A new instance is added that considers the shape of the solid. The
getShape ol 02 operation distinguishes between supportive and unsupportive

shapes in the environment.

5.5.2 Test Data

The test data introduced in this subsection will elicit sequences of occlusion the-
ories in the model. An object that loses contact with it’s supporter will not be
supported. Solid objects are described as integer values. The object 1 that loses

contact with object 2 and falls down is observed as (1,2,True) by the model.

re.d “ ol | o2 conflict picture
scription
P ==
R1 1 2 contact —— 2
T 1 Y
expectation: contact ol 02 == True
l
P e
R2 | 3 | 4 type 3| & [ 3= ijk
J |
hasTopcontact ol 02 == True

Table 5.5: Theory Sequence and test data for the support of solids

Arbitrary contact will not confirm the theory of object support. Observations
that distinguish side from top contact such as object 4 not being supported by
object 3 will lead to theory revision. The code sample below illustrates two
different experiment series and the according perceptual data.

e_support = [(1,2,True)] -- contradict, conflict contact

e_supportl = [(3,4,False)] -- contradict R1, conflict side contact
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hasContact 1 2
hasContact 3 4

hasContact

= True

= True

_ = False

hasTopContact 3 4 = True

hasContact
getAmountContact 5 6

getAmountContact
getShape 7 8
getShape _ _

= False

= True

= False

= True

False

Further observations will stress the amount of contact, e.g. object 6 lying on ob-

ject 5. Frequent observations of object 6 falling down of object 5 ((5,6,False))

will elicit theory change towards a specialized theory of object support that con-

siders the amount of contact. The figures below show the violation that should

be detected after the new theory has been acquired.

re.d e-. ol | o2 conflict picture
scription

St
LI
NS

R3 5 6 amount :

hasSupportiveAmountContact ol 02 ==
True
R4 7 8 shape
hasSupportiveShape 02 == True

Table 5.6: Theory Sequence and test data for the support of solids

On the bottom of table 5.6 the test data for the theory revision towards a

theory of object support that considers shape can be found. Object 8 is supported

by object 7. Observations of the form (7,8,True) will raise the evidence into a

theory that considers the shape of the supported object.
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5.6 Summary

The abstract model of an algebra based agent that advances through sequences
of ever improving spatial theories in an environment has been presented. The
implementation of three mechanisms has been suggested to change algebraic Re-
descriptions based on observations in an environment. Each mechanism has been
explained in analogy to a study carried out in developmental psychology. Start-
ing at the formalization of theories and test data I continue to describe a simple
theory driven agent in an environment to carry out simulations. The presented

framework has these properties:

e The model builds sequences of perpetually improving spatial theories based

on perceptual input.

e The model depends on the perceptual input. The observation of a contra-
dicting outcome of an operation in the environment with the one predicted

by the theories held in the agent’s knowledge base leads to theory change.

e Changed theories are firstly retested with older observations before theories

are used with new data.

e The model makes errors of commission and omission as tested by Bail-
largeon (2004a) and Luo and Baillargeon (2005). I illustrate this with an

example. The model is in a conflict when

— an occlusion theory without the transparency constraint has been de-
veloped and an object appears behind a transparent occluder (error
of omission). The influence of transparency is omitted with the occlu-
sion theory. The omission of transparency makes the agent belief that

objects disappear when moving behind a transparent occluder.

— an occlusion theory with the transparency constraint has been devel-
oped and a solid disappears behind a transparent occluder (error of
commission). The commitment to transparency as an influencing fac-
tor of a occlusion theory causes the model conflict with the predicted
belief. The commitment to transparency makes the agent belief that

objects cannot disappear behind transparent occluders.

e Equal or similar weights point to coexisting theories and theory generaliza-

tion.
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e The model is domain specific - support, occlusion and containment are

developed in separate sequences.

Theories are human interpretations of given data (Kuhn, 1962, p. 137). The
interpretation of these data help to articulate a theory but do not lead to theory
change. Children that frequently observe the same type of problem will not
develop new knowledge without having given the possibility to experiment or
additional evidence (Siegler, 1976). The test data that have been illustrated in
this chapter will be used in a simulation of empirical studies described in chapter
4. T am going to show qualitatively that the model is in analogy to empirical
studies by carrying out the simulations. The created test data raise conflict

situations in order to keep the agent developing a sequence of theories.



Chapter 6

Simulation of Theory

Sequences

The following computational model is based on the studies presented in chapter
4 of the thesis and has been implemented with the functional programming lan-
guage Haskell. In order to carry out a simulation a theory driven agent has been
defined in chapter 5. The agent is a wrapper to an algebraic theory change mech-
anism. The mechanism compares observations of the outcome of operations in
an environment with anticipations about the results of operations. The anticipa-
tions are generated out of the theories the agent holds at the time of observation.
They are the beliefs of the agent that will guide the conceptual change. Whenever
anticipation and observation do not fit the agent will try to build a new theory.
The major point in this chapter is that frequent mismatches between observations
and expectations will elicit changes in the algebraic structure of spatial theories.

The model is in accordance with empirical data described in chapter 4.

6.1 The Sandbox

In a simulation empirical studies of developmental psychology with an agent in
an environment are carried out in analogy to an infant playing in a sandbox. The
simulations show that dependent on the perceptual input (like toys in a sand-
box) different instantiations of the cognizing agents (different children), having
different initial knowledge come to build different spatial theories. The spatial
theories differ in the level of details, considering different number of percepts.

The general agent’s behavior is in accordance with infant’s behavior in empirical

90
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studies carried out in developmental psychology.

e The agent will leave the experiment if there is no variation in the experiment
or nothing new can be reasoned out of the given test data (agent state:
GiveUp).

e An agent that is initialized without any test data will request test data,

noting being unable to test it’s concepts (program error).

e An agent that is always confronted with the same test data will not be able

to advance to a new concept (agent loops until time limit exceeds).

e A variation in the percepts will lead to new conflicts that elicit the adap-
tation of concepts. The adaptation is based on a dynamic weighting mech-

anisim.

In the following three sections simulations for different theory sequences are car-
ried out. The simulated sequences will be compared to the outcome of empirical

studies. Further examples can be found in the appendix.

6.2 Occlusion of Solids

The acquisition of a sequence of theories for the occlusion of solids has been
simulated. The empirical studies have been described in section 4.2 and the
fomalization of the theories in section 5.3. The simulated results of the model are
in accordance with the findings of Hespos and Baillargeon (2001b),Baillargeon
(2004b) and Luo and Baillargeon (2005).

Different agents are instantiated with test data in order to carry out a simu-
lation. Agents that are confronted with the same data over a long period of time
will stop acquisition of new concepts and leave the experiment. The variation in
the test data will lead the agents to change their theories.

agl :: Agent
agl = Agent 1

(o 0 -- no observations
[Occlusion.theories !! 0] -- holds unweighted theories
Occlusion.theories -- potentially possible theories

Observe -- state: willing to explore
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The piece of code below illustrates an agent that observes the environment. The
agent receives an observation of the type [1,2,True]. The observation has to be
read as solid 1 occludes solid 2. The truth value indicates that solid 1 is hidden
by the occluder solid 2.

Loading package haskell98-1.0 ... linking ... done.
"Time: "1

observing environment ...

Agent id: 1

Detected percepts:"isBehind"

Observations: [(1,2,True)]

Current theories: T 1 ["isBehind"] Function 0.0
State: Test

The first instantation of the agent holds a simple theory about the occlusion of
solids, this can be seen in the status line “Current theories”. The theory has not
been tested before therefore the weight has been set to 0.0. The agent received
an observation and has a theory about occlusion. Therefore the agent changes

it’s state to Test (see output above).

testing theories ...

Agent id: 1

Detected percepts:"isBehind"

Observations: [(1,2,True)]

Current theories: T 1 ["isBehind"] Function 1.0
State: Use

The theory predicts a solid to be hidden by another if it is behind the other solid.
The observed test cases - in the sample code above there is just one - can be
explained by the current theory, the weight is set to 1.0. The agent changes it’s

state to Use.

using theories ...

Agent id: 1
Detected percepts:"isBehind"
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Observations: [(1,2,True)]
Current theories: T 1 ["isBehind"] Function 1.0

State: Observe

No conflict appeared in the observation cycle and no new theory has been built.
The agent changes it’s state to Observe in order to acquire new test data for the

current theories.

"Time: "2

observing environment ...

Agent id: 1

Detected percepts:"isBehind", "hasWindow"
Observations: [(1,2,True),(3,4,False)]

Current theories: T 1 ["isBehind"] Function 1.0
State: Test

The invocation of the observe function leads to new test data. In time cycle 2
the agent observes a solid 3 being behind a solid 4. Solid 4 has a window. The
old observation data stay in the memory of the agent. As new test data arrived

the agent changes its state to Test.

testing theories ...

Agent id: 1

Detected percepts:"isBehind", "hasWindow"
Observations: [(1,2,True),(3,4,False)]

Current theories: T 1 ["isBehind"] Function 0.5
State: Build

The agent still holds a theory that considers an object to be occluded if it is
behind the occluder. The expectation that the solid 3 is hidden by solid 4 cannot
be generated by the theory T1. The weight of the theory is set to 0.5, meaning
the agent can explain half of the observed phenomena with the current theory.

Therefore the agent changes it’s state to Build.

"Time: "3
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observing environment ...

Agent id: 1

Detected percepts:"isBehind", "hasWindow"
Observations: [(1,2,True), (3,4,False)]

Current theories: T 1 ["isBehind"] Function 0.5
State: Build

Now the agent chooses an occlusion theory among all possible theories that con-
siders the perceptual influence of windows. The agent specializes the theory by
adding an axiom to the previous theory, holding now the old theory T1 tested
with a weight of 0.5 and the new theory T2. T2 is still untested and therefore
holds the weight 0.0. The agent therefore changes it’s state to Test.

building theories ...

Agent id: 1

Detected percepts:"isBehind", "hasWindow"
Observations: [(1,2,True), (3,4,False)]

Current theories: T 1 ["isBehind"] Function 0.5
T 2 ["isBehind","hasWindow"] Function 0.0
State: Test

In the test phase the agent detects that the new theory cannot only explain the
new test data (3,4,False) but also the old observation of the type (1,2,True). The
new theory receives more positive evidence. The theory can predict all observed
cases, therefore its weight is set to one. The old theory remains in the agent’s
memory being less important with a weight of 0.5. The agent holds a theory

that sufficiently explains its surroundings and therefore set it’s state to Use.

testing theories ...

Agent id: 1

Detected percepts:"isBehind"

"hasWindow"

Observations: [(1,2,True),(3,4,False)]

Current theories: T 1 ["isBehind"] Function 0.5
T 2 ["isBehind","hasWindow"] Function 1.0
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State: Use

The observation of the environment and the detection of new percepts lead to
further theories. As long as a theory predicts sufficiently the agent will set it’s
state from Use to Observe in order to acquire new test data. The agent actively
tries to find data that could falsify it’s theories.

using theories ...

Agent id: 1

Detected percepts:"isBehind", "hasWindow"
Observations: [(1,2,True),(3,4,False)]

Current theories: T 1 ["isBehind"] Function 0.5
T 2 ["isBehind","hasWindow"] Function 1.0

State: Observe

After seven iterations of the simulation the agent detects - based on the given
perceptual input - an occlusion theory that considers the spatial relation behind,
windows in the occluder, and the size of the hidden object. The agent stops to

observe the environment as no new perceptual data are entered.

"Time: "7

using theories ...

Agent id: 1

Detected percepts: "isBehind", "hasWindow", "size",
Observations: [(1,2,True), (3,4,False),(6,5,False)]
Current theories: T 1 ["isBehind"] Function 0.33

T 2 ["isBehind","hasWindow"] Function 0.67

T 3 ["isBehind","hasWindow","size"] Function 1.0

State: Observe

Agent getting bored - no new data
CHECK Simulation time limit

The simulation is in accordance with the study carried out by Hespos and Bail-
largeon (2001b),Baillargeon (2004b) and Luo and Baillargeon (2005). The be-
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havior of the agent in the experiment can be simulated in analogy to the tested

children. Therefore it can be assumed that the model is plausible.

6.3 Containment of Solids

In order to simulate the development of a containment concept studies by Hespos
and Baillargeon (2001a,b) have been formalized and simulated. The studies have
been described in section 4.3 and their formalization in 5.4. An agent has been
initialized with a simple theory of containment that considers an object to be
inside a container if the agent has observed that the object was put in another
object with an opening. Agents that are confronted with the same data over a
long period of time will stop acquisition of new concepts and leave the experiment.

The variation in the test data will lead the agent to change it’s concept.

ag3 :: Agent

ag3 = Agent 3
o 0 -- no observations
[Containment.theories !! 0] -- holds unweighted theories
Containment.theories -- potentially possible theories
Observe -- state: willing to explore

The agent observes that an object is put into another and that it is true that
solid 1 is inside solid 2. This knowledge is expressed by the observation status line
“Observations: [1,2,True|”. Solid has an opening that is detected by the agent.

Loading package haskell98-1.0 ... linking ... done.
"Time: "1

observing environment ...

Agent id: 3

Detected percepts:"isOpen"

Observations: [(1,2,True)]

Current theories: T 21 ["isOpen"] Function 0.0
State: Test

The agent holds an untested theory about the containment of objects. The weight
of the theory is 0.0. Therefore the agent sets it’s state to Test.

testing theories ...
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Agent id: 3

Detected percepts:"isOpen"

Observations: [(1,2,True)]

Current theories: T 21 ["isOpen"] Function 1.0
State: Use

The theory can predict the outcome of the observed operation. The weight of
the theory is therefore calculated with 1.0. The agent holds a theory that can

sufficiently explain its environment and changes it’s state to Use.

using theories ...

Agent id: 3

Detected percepts:"isOpen"

Observations: [(1,2,True)]

Current theories: T 21 ["isOpen"] Function 1.0

State: Observe

In the same way as in the occlusion experiments the agent continues to observe

the environment. The detection of new percepts leads to new theories.

"Time: "8

observing environment ...

Agent id: 3

Detected percepts:"isOpen", "size", "movement", "loosefit", "tightfit"
Observations: [(1,2,True), (4,3,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","size"] Function 0.6

T 23 ["isOpen","size","movement"] Function 0.8

T 24 ["isOpen","size","movement","loosefit"] Function 0.8

T 25 ["isOpen","size","movement","loosefit","tightfit"] Function 0.6
State: Build

The agent continues to observe it’s environment. The code sample above shows

an agent after the eighth iteration step. The agent holds five different types of
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observations in its memory and dected a set of five theories. Opposite to the
example of the occlusion sequence the agent does not hold a theory that fully
explains all containment events at this point of time. This can be seen in the

code example as no theory has a weight of 1.0.

building theories ...

Agent id: 3

Detected percepts:"isOpen", "size", "movement", "loosefit", "tightfit"
Observations: [(1,2,True), (4,3,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","size"] Function 0.6

T 23 ["isOpen","size","movement"] Function 0.8

T 24 ["isOpen","size","movement","loosefit"] Function 0.8

T 25 ["isOpen","size","movement","loosefit","tightfit"] Function 0.6
State: GiveUp

Theory T23 explains containment based on axioms that consider the opening of
the container, size of the involved objects and the shared movement of container
and object inside. However observation points to solids that can contain an object
being movable inside and solids containing another solid not being movable inside.
The agent stops testing the theory because no new theory can be built out of the

given percepts.

testing theories ...

Agent id: 3

Detected percepts:"isOpen", "size", "movement", "loosefit", "tightfit"

Observations: [(1,2,True), (4,3,False),(5,6,False),(7,8,False),(9,10,True), (9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","size"] Function 0.6

T 23 ["isOpen","size","movement"] Function 0.8

T 24 ["isOpen","size","movement","loosefit"] Function 0.6

T 25 ["isOpen","size","movement","loosefit","tightfit"] Function 0.6

State: GiveUp

using theories ...
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*** Exception: No percepts or theories found that fit the data.

*NewSim>

The code example above shows that a generalization step is necessary. The
general theory of containment T23 received the highest weight. To distinguish
between loose-fit and tight-fit containment it was necessary to build a new gen-
eral theory about movable objects (see chapter 5). As theory building is not
automated, new code would have to be added and then the simulation restarted.
Automation however is possible as the weights indicate which general theories
have to be built. The more percepts the agent receives the stronger will be the
general theories (T23), the specialized theories (T24,T25) will get lower weights
but still will grow.

The simulation is in accordance with studies carried out by Hespos and Bail-
largeon (2001a,b). The behavior of the agent in the experiment can be simulated
in analogy to the children tested. One can therefore assume that the model is

plausible.

6.4 Support of Solids

A sequence of support theories has been described and formally modelled (see
section 4.4 and 5.5). The model is based on studies carried out by Baillargeon
(1994, 2004b). An agent has been initialized with a simple theory of object

support that just considers the contact between two solids.

ag2 :: Agent

ag2 = Agent 2
(o 00 -- no observations
[Support.theories !! 0] -- holds unweighted theories
Support.theories -- potentially possible theories
Observe -- state: willing to explore

As in the two sequences before the agent cycles through the observe-build-test-use
functions to build theories about it’s environment. When a theory explains all
given data the agent seeks for new test data and percepts that falsify the current
theories. The detection of new percepts and contradicting test cases lead to the

choice of new theories.

Loading package haskell98-1.0 ... linking ... done.
"Time: "1
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observing environment ...

Agent id: 2

Detected percepts:"Contact"

Observations: [(1,2,True)]

Current theories: T 10 ["Contact"] Function 0.0
State: Test

Agent id: 2

Detected percepts:"Contact"

Observations: [(1,2,True)]

Current theories: T 10 ["Contact"] Function 1.0

State: Use

Agent id: 2

Detected percepts:"Contact"

Observations: [(1,2,True)]

Current theories: T 10 ["Contact"] Function 1.0

State: Observe

Agent id: 2

Detected percepts:"Contact"

"TopContact"

Observations: [(1,2,True),(3,4,False)]

Current theories: T 10 ["Contact"] Function 1.0

State: Test

100

After 11 iteration cycles the agent stops observing the environment. The agent

holds a theory that can predict the support of a solid through another by consid-

ering the perceptual parameters type of contact, amount of contact, and shape

of the involved solids. As no new contradictions occur the agent gets bored as he

holds a theory that sufficiently explains the environment.



Chapter 6 - Simulation of Theory Sequences 101

"Time: "11

using theories ...

Agent id: 2

Detected percepts:"Contact", "TopContact", "AmountContact", "Shape"
Observations: [(1,2,True),(3,4,False), (5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Observe

Agent getting bored - no new data
CHECK Simulation time limit

*NewSim>

The simulation is in accordance with the study carried out by Baillargeon (1994).
The behavior of the agent in the experiment can be simulated in analogy to the

tested children. Therefore it can be assumed that the model is plausible.

6.5 Summary

Sandbox Geography is a formal theory for the acquisition and adaption of spatial
concepts. In the simulation of empirical studies I could qualitatively show that
the formalized model conforms to the empirical data described in chapter 4 of
the thesis. I provided the implementation of an agent as a wrapper to a cognitive
changing mechanism for spatial theories. The mechanism evaluates theories by
comparing observations with generated anticipations. The comparison of obser-
vations and expectations is based on counting success and failure of operations
carried out in an environment.

The model considers that an agent would leave the experiment when new in-
stances do not occur. Because of conflict cases the agent must adapt it’s concepts.
The acquisition of the new concept has to be done manually by the researcher.
The simulated data point to the theory constructing operations of specialization

and generalization.



Chapter 7

Conclusions and Future Work

“

disconfirmation can be decisive, but confirmation is just an
1

invitation for further investigation.”
This chapter summarizes the present thesis. It concludes the methodology used
to design a spatial cognizing agent in a sandbox world. Important findings are
discussed and analyzed. Future research directions are identified providing a

number of new questions.

7.1 Summary

This research formally shows how observations of an environment lead to a new
theory based on a set of empirical studies. Studies have been chosen that describe
spatial aspects of the world as sequences of naive theories. The spatial theories
have been modeled using algebraic specifications.

The thesis started with a notion about theory, giving different viewpoints
and reviewing the literature. The theory theory of cognitive development was
introduced that states that the world can be explained by a set of theories that
changes in the light of new evidence. With the tools of observation, prediction
and adaptation theories are manipulated by the growing infant. The research was
connected to the history of science and naive theories. Chapter 2 closed with a

review of computational models for cognitive development to position the present

1

Marcus (2001)
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interdisciplinary approach to other available models in cognitive science and to
consider recent findings in the proposed model.

Chapter 3 started with a discussion of research approaches towards a model
that contributes to naive geography. The chapter outlined the characteristics of
a model of a theory driven agent that learns spatial concepts in an environment.
Affordances, rationality and feedback were discussed as a means to evaluate a
theory in an environment. The sequence of theories is dependent on the innate
equipment of the agent, the learning mechanism, and the cues given by the en-
vironment. The novelty of this approach lies in the use of prelinguistic empirical
data to build formal models about the acquisition of image schemata.

In chapter 4 empirical studies that describe sequences of theories for the oc-
clusion, support and containment of objects were reviewed. The general setup
of the empirical studies used was explained and the results and interpretations
were summarized. Mechanisms to build sequences of theories were derived from
identifying regularities in the empirical data. In the modeling process three types

of theory changing mechanisms have been found:

1. Specialization considers a new influential parameter. A theory is special-
ized by constraining it through an axiom. The axioms constrain the theory
to a special set of sorts and operations. The more axioms are added the

fewer sorts can be described by the specialized theory.

2. Generalization is an abstraction step. A theory is found to be a special
case of a more general theory. A number of other special theories may
exist that can be derived from the newly created generalized theory. The

coexisting theories are special cases of the generalized theory.

3. Dynamic Weighting is a mechanism to assign importance to a theory.
Theories with higher weights are favored to those with lower weights. Belief
revision is the result of the dynamic weighting mechanism that assigns a

higher weight to a previously low weighted theory.

Empirical studies on sequences of theories for the equality, occlusion, support
and containment of objects were formally modeled in chapter 5. A mechanism
for the evaluation of spatial theories in an environment based on a weighting
mechanism was presented. In a detect-build-test-use cycle the agent evaluated

theories in an environment and reasoned about their accordance. Theories were
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not built automatically by the agent. The agent chose among possible theories.
In future work this step will be replaced by an inferencing mechanism. Different
instantiations of the agent stand for differently developed theories

In chapter 6 the hypothesis was verified that qualitatively new spatial repre-
sentations can be gained by the adaptation of axioms in a formal model based
on algebraic specifications. Simulations were carried out using the agent based
model. Observations were created according to the empirical studies of develop-
mental psychology and tested with the model. The model’s behavior was com-
pared to the behavior of infants in empirical studies. The simulated outcomes

were in accordance with the empirical data.

7.2 Results and major findings

The present thesis discusses the acquisition of spatial concepts based on empirical
studies of developmental psychology. Space has a certain primacy in our lives as
its understanding is crucial to survive. On a daily basis we have to find objects in
space and find our ways through different environments. The acquisition of spatial
concepts therefore starts at birth, i.e. the moment we are set in an environment
having some innate concepts.

The major result of this research is a framework for the acquisition of spatial
theories in an environment that starts with some innate theories. A theory driven
agent advances through sequences of spatial theories based on perceptual input.
The model is based on algebraic specifications. Three mechanisms of conceptual
changes have been classified.

Theories can be constrained by adding axioms to more specialized theories.
Theories can be abstracted to more general theories by deleting axioms. Theories
can be evaluated by a dynamic weighting mechanism that compares observations
with predictions of the outcome of operations in the environment. The proposed

framework shows the following properties. It is

1. modular: A conceptualization of the world is built using algebras. Each
algebra is derived from an empirical study of cognitive development. Initial

algebras have been defined to describe the world.

2. dynamic: Theories are expressed by algebras. Theory revision is based on
three mechanisms. They change the behavior of the model and thus the

spatial conceptualizations of the agent in the environment.
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3. action-driven: The observations and predictions of the outcome of actions?

in an environment lead to the formation of new theories. The theories held
by the agent serve to anticipate the outcome of the actions. A comparison
of anticipation with observation leads the agent to evaluate it’s concepts by

further observation and if necessary by adapting them.

The proposed model for theory change is based on the beliefs and observations of
the agent. The agent’s model has been derived from infant’s expectations about
table top objects in empirical studies. The theory theory of cognitive development
suggests that children’s mechanism of theory revision is also used by adults. The
present model therefore does not only apply to children but also to adults.

The formal framework about people’s beliefs of space is a contribution to naive
geography. The novelty of the present approach lies in the use of prelinguistic
empirical data for deriving a model from the acquisition of spatial theories. The
grounding in empirical studies of developmental psychology makes the formalism

cognitively plausible.

7.3 Future work and open questions

The current model is able to simulate an agent that evaluates spatial theories
with an environment. The agent is however not able to build automatically these
representations. Future work will address more comprehensive methods to build
theories automatically from the given percepts.

Discovering new theories could be based on statistics (Seidenberg and Elman,
1999). While Seidenberg and Elman (1999) illustrate statistic learning of patterns
in a lingual task recent work by Gopnik and collaborators suggest that learning
theories in tasks where children require conditional reasoning can be simulated
with a Bayesian Belief Network mechanism (Gopnik and Schulz, 2004; Gopnik,
2005). Cause-effect relationships between variables in a Bayesian network can be
defined by statistical analyses from observed data.

Extensions of the present model using a stochastic approach are under consid-
eration. The mechanism would require the automatic creation of new instances
and classes in the Haskell code. Manipulation of code during runtime is pos-
sible using Template Haskell. Template Haskell however has not been deeply

investigated in the course of the research and remains a topic of future research.

2The actions of others and later the agent’s own actions



Chapter 7 - Conclusions and Future Work 106

Future research will investigate the properties of the current algebras. Espe-
cially the identification of morphisms in the present data is planned. Morphisms
describe analogies, but you do not often find them in the empirical data, e.g. there
is an analogy between an object being visible in a transparent container and an
object being visible behind a transparent occluder. Although the developmen-
tal sequences point to a domain specific acquisition of two different concepts of
transparency (one for containment and one for occlusion), adults’ naive trans-
parency theories may be explained by analogy, in the sense of a representational
rediscription as proposed by Karmiloff-Smith (1992). The body of empirical data
for this kind of investigation will be investigated in future research.

The thesis offered a simple model for the acquisition of spatial concepts in
small scale spaces. I conjecture that the bootstrapping of knowledge in the sense
of the theory theory (Gopnik and Meltzoff, 1997) has implications on the way we
build concepts of large scale spaces. Elements of small scale space representations
may then be transferred in an adapted form to large scale space representations,
perhaps by exploiting morphisms. A large scale space is a space that is explored
by wandering through it. Mobility occurs around the age of twelve months, and
has strong influence on cognitive development (Thelen et al., 2001; Hannaford,
2002). New tests and empirical studies with children and adults are required in
order to test the hypothesis that large scale space representations bootstrap from
small scale space representations. Some pointers in this direction have been given
by Gattis (2003). The change towards a mobile agent has a high priority on the
agenda for future research.

Another open research question are communication processes between agents
that hold different concepts. This research would go into the direction of a cog-
nitive framework. In a multi-agent framework agents may hold different con-
ceptualizations of an environment based on their previous experiences. Given
the ability to communicate agents could take over the beliefs of other agents. A
number of open research questions remains to be solved. How can agents commu-
nicate that do not hold the same conceptualizations? I assume that learning to
communicate spatial concepts already need the concepts in advance (see (Hespos
and Spelke, 2004; Bloom, 2004)).

In a multi-agent framework a model about the beliefs of other agents’ beliefs
is necessary. Psychologists call this the theory of mind. A formal model of the

theory of mind is vital to consider incomplete knowledge of the object concept
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Figure 7.1: The theory of mind

of an agent (see figure 7.1). Towards a more realistic model for the acquisition
of spatial theories the proposed agent will be gradually endowed with beliefs, de-
sires, intentions and even emotions. Towards a cognitive architecture memorizing,

attention and strength of stimuli should be considered.

7.4 Conclusion

The current approach uses symbols and rules. By formally modeling and simu-
lating empirical studies I have shown that spatial theories can be described by
a set of axioms and three theory change mechanisms. Other researchers confirm
the use of “rule-like” descriptions for naive theories (Siegler, 1976; Shrager and
Siegler, 1998; Siegler and Araya, 2005) as an adequate modeling technique. The
vehicle of algebra seems the right tool to describe spatial theories and their change
for their use in a computer. I want to stress again that I do not argue here that
children think in algebras or are rational in their reasoning (Bower, 1989). The
symbolic approach is a tool to describe sequences of changing spatial theories in
a computer close to the behavior of people.

Geoinformation systems are more than desktop applications and location
based services. Under the paradigm of spatial cognition roadsigns, sketches,
verbal descriptions and map representations of robots belong to the realm of
geoinformation. The major challenge for spatial cognition is to find out how
spatial representations interact. Mechanisms to match different representations

will be necessary to describe how new representations develop out of existing
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representations. A better formal understanding of this matching process will also
contribute to system interoperability.

The GI community needs sound formal definitions of the communication be-
tween two systems that are based on different conceptualizations. That enables
the systems (software agents) to negotiate the concepts held by one system to
the concepts held by the other system. An automatic mechanism seems still far
based on the current investigations.

The mass of people holds naive concepts of space, physics and any other area
of human knowledge. Some people may have advanced knowledge in their field of
expertise. But the main part of our everyday reasoning is based on commonsense
concepts.

Commonsense concepts start to develop in childhood and underlie frequent
changes. Some of these concepts grow stably and should therefore be considered
in user interfaces. Not only the naive theories but also a mechanism of change
should be considered, e.g. distinguishing novices from expert users. Findings
that children can handle three objects at a glance and that adults operate on
seven plus or minus two objects easily (Miller, 1956) are just the start. If the
aim is that the majority of people uses geoinformation, more formal models of

changing commonsense spatial theories are needed urgently.
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Appendix A

Theory Change and

Development

A.1 Occlusion of objects

Axiom - A is
CONCEPTUAL
PERCEPTION occ11]13diefd by | Age CHANGE
; Ais behind B | < 2P ;
monthg
structure of
occluder previous + 3
presence o as no window
( f h ind onthd SPECIALIZATION
doorways and B rmon
windows)
. previous +
height of the height A < 35 | SPECIALIZATION
objects involved . months
height B
previous + 7
width of object width A < SPECIALIZATION
width B monthg
previous + 75
transparency not mo‘nths GENERALIZATION
transparent B
transparent B

Table A.1: Solid Occlusion Theory Sequence
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A.2 Support of objects

Axiom - CONCEPTUAL
PERCEPTION |\ s on Bif | “8° CHANGE
previous + A <3
- has contact thd -
with B ot
previous + A 4.5- SPEZIALIZATION
type of contact . 5.5
is on top of B
months
e e previous + 5.5
movability inside GENERALIZATION
movable on B | monthsg
previous + not 5.9
movable on B | monthg
previous +
amount of amount of 6.5 SPECIALIZATION
contact contact is months amount of contact
supportive
shape of the previous + 12.5 iifil(ﬁléizAzizg
supported object shape of B monthg P objecl‘zp

Table A.2: Solid Support Theory Sequence

A.3 Containment of objects
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Axiom - A is CONCEPTUAL
PERCEPTION in B if Age CHANGE
A shares
2.5,
movement of the movement 35 i
solid with container )
months
B
. fth previous + 2.5,
Openiis Of the B has an 3.5 | SPECIALIZATION
solid .
opening monthg
functional .
distinction previous + 5
A is movable GENERALIZATION
between . months
. in B
containers
previous + 5
A not movable
. . months
in container B
size of the solid
(width 4-6 previous + 7.5
months, height A<B monthg SPECIALIZATION
7.5 months)
previous +
not 10
transparency transparent monthd GENERALIZATION
container B
10
transparent months

Table A.3: Solid Containment Theory Sequence
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Appendix B

Formal Tools and Methods

This chapter describes the formal methods and tools used in the present thesis. In
order to build a formal theory means to specify precisely the terms and relations of
an underlying conceptual model. Errors in the conceptual model can be detected
in the process of formalization. Abstraction helps to keep the formal theory clean
by avoiding unnecessary details.

The model was implemented using the functional programming language
Haskell. Classes represent algebras and thus theories. Polymorphism has been
used to overload the expectation functions of a theory. Partial initialization of
functions has been utilized to treat all expectation functions in the same way.
These features will be outlined in the section about functional programming.

The hypothesis is based on axiomatic specification. The aim is to verify
that a spatial representation can be built upon algebras. A change in these

representations can be reflected in an adaptation of underlying axioms.

B.1 Formal specifications

Domain experts in psychology or philosophy usually provide informal descriptions
about human behavior. The interpretations of empirical experiments provide in-
formation about the actions, behaviors and expectations of humans in a certain
setting. In order to describe these in a computer, formal specifications are re-
quired. In a formal specification a problem or task is described in terms of actions,
behaviors and expected results (Liskov and Guttag, 1989).

A formal specification can be seen as a layer between the concept, one holds in

his mind and an infinite number of possible computer programs for the concept.
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The formal specification provides a mathematical description of the concept.

In the present thesis we use algebraic specifications as a formal method. The
term algebra as used has been issue of controversies (Frank and Medak, 1997).
I use a weak notion of the mathematical definition. In order to make the speci-
fications executable only constructive axioms are allowed. Therefore it has been
suggested to say model based (executable) specification method, rather than us-

ing the term algebraic specifications.

B.1.1 Algebras

Algebras describe mathematical structures. There are well known algebras, like
the algebra for natural numbers, the Boolean algebra or the linear algebra for
vector calculations. An algebra groups operations that are applied to the same
data type e.g. the Boolean algebra has operations that are all applied to truth
values. I use a definition of computer science and refer to many sorted algebra

that can be structured into three parts:

1. A set of sorts that identifies involved objects.

2. A set of operations that describes what can be done with the objects and

groups them by their functionality.

3. A set of azioms that defines the behavior of the operations.

Informally sorts stand for types, objects or carriers. They abstract from individ-
ual values to a set of values. An algebra that depends just on one sort is called
a single-sorted algebra in comparison with many-sorted algebra that depend on
many different types.

Operations of data abstraction are classified into constructors and observers.
They are carried out just over defined sorts. Liskov and Guttag (1989) distinguish
four types of operations. Primitive constructor operations create sorts without
taking sorts of their type as input. Constructor operations take sorts of their
type as input arguments and create other sorts of their type. Mutator operations
modify sorts of their type. Observer operations return the properties of their
sorts.

Azioms describe the behavior of operations. This allows to predict the out-
come of an operation. Given a set of axioms one can predict which sorts can be

constructed out of a given algebra.
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B.1.2 Abstract Data Types with Algebraic Specifications

The given example serves as an illustration of how to define an abstract data type
using algebraic specifications. The data structure of a stack can be modeled with
a many-sorted algebra. The example given below can be found in the literature
(Liskov and Zilles, 1978; Frank, 1999). The sorts used are a stack of elements a

and the element a.

Algebra Stack (stack of a, a)

Operations:

create :: stack of a -- primitive constructor
push :: stack of a -> a -> stack of a -- constructor

top :: stack of a -> a —-- observer

pop :: stack of a -> stack of a -- mutator

Axioms:

top (push s a) = a -- axiom 1
pop (push s a) = s -- axiom 2
top (create) = error -- axiom 3
pop (create) = error -- axiom 4

The primitive constructor operation create serves to construct an empty stack,
while the constructor operation push takes a stack of elements and an element
as input arguments and returns a stack of elements with the element added. Top
returns the topmost element of the stack, being an observer operation. Pop is an
example for a mutator operation, returning the stack with the top element being
removed.

The axioms define the behavior of the operations. Axiom 1 specifies that the
top element of a stack of elements is the element that has been recently pushed
on the stack. Axiom 2 states that after having pushed an element on the stack
of elements pop returns the same stack of elements as before the execution of the
operation push. The behavior of the operations top and pop is undefined for an
empty stack, therefore the error sort is added for the definition of axiom 3 and

axiom 4.
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B.1.3 Summary

Algebraic specifications are based on the mathematical sound theory of algebra.
Algebraic specifications have been used to define abstract data types for the
spatial and temporal domain (Kuhn and Frank, 1991b; Frank and Medak, 1997;
Frank and Raubal, 1999; Raubal, 2001; Krek, 2002).

In the present thesis spatial theories as found with infants are described with
algebraic specifications. Three theory change mechanisms are implemented us-
ing the functional programming paradigm. Together with a purely functional

programming language algebraic specifications lead to executable specifications.

B.2 Functional Programming

Functional programs consist entirely of functions (Hughes, 1989). Each function
takes a number of input types and returns a single output type. Constants are
functions, which always return the same value. Even the program itself is a
function. Because a function call can have no other effect than producing a

result, functional programs are said to have no side effects.

General function pattern:

fktname :: parltyp -> ... -> parntyp -> fkttyp

A number of implementations for functional programming languages is avail-
able. An incomplete list of available functional programming languages follows: A-
calculus, Lisp, ML, SML, Hope, Miranda, OPAL, Haskell, Gofer. For the present
thesis Haskell has been chosen as a tool.

Functional programming is grounded in the declarative programing paradigm.
In comparison with imperative programming languages like C++ or Java, func-
tional programming languages do not depend on the sequence of commands. Ex-
pressions are evaluated comparable with the evaluation of cells in a spreadsheet
application.

The evaluation process consists of alternating expansion and simplification
steps. Depending on the evaluation strategy applicative order and normal order
evaluation languages can be distinguished. Function application is the operator

with the highest priority.
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B.2.1 Data Types and Strong Typing

Functional programming languages support a set of built in types. Expressions
are evaluated and their result is associated with a type e.g. Int, Integer,
Char, String , and Bool. These are primitive types or base types.

Programming languages that support data types have two advantages. Firstly
the programmer does not have to bother with the representation of a certain type
in the memory of the computer. Secondly the compiler can assist the programmer
by type-checking the meaning of expressions with a type inference mechanism.
Type errors can be detected at the earlier stage of compile time rather at the
runtime of the program.

Types can be composed to a fixed set, a tuple or to a set of undefined size,
namely a list. Lists are the most common and often used type in a functional
programming language. Predefined functions are usually available in functional
programming languages. Tuples, lists and functions can be further combined to
some more complex data types as lists of lists, lists of tuples and lists of functions,
e.g. a string is defined as a list of characters. Haskell lists are enclosed in squared
brackets - [ 1.

-42 :: Int

String = [Char]

Tuple = (Float,Float)
ArbitraryList = [Typel

User defined data types extend functional programming languages so that data
types of any complexity can be described. Haskell allows the definition of alge-
braic data types and abstract data types. In the most general form a user defined
data type consists of a type name (typeName) and n constructor functions (Conj,
i =1 .. n), each followed by a number of types. The arity of the constructor

function can range from 0 to n.

data typeName

= Conl t11 ... tik1l |
Con2 t21 ... t2k2 |
Conn tnl ... tnkn

A new type can be formed just by enumerating its elements, e.g. the type Season
has the constructor functions Spring, Summer, Fall and Winter. The con-

structor functions are of arity 0. The type is called an enumeration type.
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data Season = Spring | Summer | Fall | Winter

When the constructor function has an arity equal or bigger than one, a product
type can be defined. In the following example the product type Person has a
constructor function Person. The constructor takes the types ID, Name and Age
as input, they have been defined as aliases to available primitive types. The
constructor behaves like a function that has the signature (ID -> Name -> Age

-> Person).

type ID = Int
type Name = String
type Age = Int

data Person :: Person ID Name Age

The combination of nullary and unary constructor functions lead to sum types.
All types can be defined as sum types. Sum types allow recursive definitions and
the use of type variables. Therefore they can be of arbitrary complexity. The

implementation of a binary tree can be found below.

data Tree a = Leaf a |

Node a (Tree a) (Tree a)

B.2.2 Polymorphism

Polymorphism has been used to overload a theory with different implementations.
Polymorphism is the property of a function that can be applied to arguments of
different types. Parametric polymorphism enables the reuse of code by defining
a function for a data structure independent on a given parameter type, e.g. the
implementation of the length of a list is not dependent on the parameter type.
The code sample below illustrates the recursive definition of function to calculate
the length of a list. The implementation can serve different parameter types, such
as Float, Int, Char. Using polymorphism in programming leads to less code
and thus shorter programs (Hudak and Fasel, 1992).

length :: [a] -> Int

length [1 =0
length (x:xs) = 1 + length (xs)

Ad-hoc polymorphism or overloading gathers different types in one operation to-

gether. Different implementations for the operation depending on the type have
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to be provided. Haskell introduces the concept of type classes for ad-hoc poly-

morphism, which will be explained in section B.3.2.

B.2.3 High Order Functions

High order functions are used to describe preinitialzed theories. A functional or
high order function is a function whose arguments are functions or whose result
is a function. The map function illustrates how a high order function works. Map
takes a function with the signature (a -> b) and a list of arguments [a] and
applies the input function to each argument in the argument list. It returns the
list of evaluated arguments.

map :: (a -> b) ->[a] -> [b]

map f xs = [f x |x<-xs]

Other examples are the filter or fold functionals that can be found in the Haskell
language report (Hudak et al. 1992). Functional programming languages al-
low partial function application. A function that receives fewer arguments than
needed will be partially evaluated. Its result is a new function that waits for
missing input arguments.

> map (<3) [1,2,3]

> [True,True,False]

A function that takes the input arguments one after the other, is called curried.
Only curried functions allow partial function application. An uncurried function
bundles its input arguments in a tuple. In order to uncurry a curried function
two operations are necessary:

curry :: ((a,b) =>c) -> (a => b -> ¢))
uncurry :: (a -> b -> ¢) -> ((a,b) -> ¢)

New functions can also be created by using function composition. The compo-
sition of two continuous functions yields to a continuous function. Functional
programming languages offer function composition via an operator.

(.) :: (b=>c) -> (a=>b) > (a -> ¢)
(f .g) x=1 (g x)

High order functions distinguish functional programming from other program-
ming languages. The partial application of functions and the possibility to define

functions of functions permit abstract specifications. As a result generic code can

be written that is modular and highly reuseable.
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B.3 Haskell

The functional programming language Haskell was invented by Haskell B. Curry.
It is based on a Turing complete computability system, the A-calculus. Haskell
extends the A-calculus by syntax and makes it thus executable.

Haskell is a purely functional programming language. That means that ex-
pressions written in Haskell do not cause side-effects. When values of expressions
do not depend on unknown states a programming language is referentially trans-
parent.

Haskell is based on the Hindley Miller type system and supports the following
predefined types in its standard prelude: integer (Int), floating point numbers
(Float), Boolean values (Bool), characters (Char), lists ([al), strings (String)
and tuples. Haskell expressions are usually evaluated lazy. An introduction to
Haskell can be found in the literature (Hughes, 1989; Hudak and Fasel, 1992;
Thompson, 1996; Bird, 1998).

B.3.1 Syntax

Function names and variables start with small letters, types, constructors and
modules start with capital letters. Spaces and brackets separate names. Argu-
ments (of functions) are separated by spaces. Spaces have a higher precedence
than any other operations.

Expressions hardly need to be bracketed in Haskell as the layout rule defines
top levels of a program. Code that is to be bracketed can be simply indented.

Every indentation "opens” a new bracket.

Function application:

f (x) =1fx

Code example - quicksort algorithm
gsort :: (Ord a) => [a] -> [al
gsort [] =[]

gsort(x:xs) = gsort [ili<-xs,i<=x] ++ [x] ++ gsort[ili<-xs,i>x]

Code written in functional programming languages is short. Factors between
5 - 20 in terms of smaller code length, compared with imperative programming
languages have been reported (Hudak and Jones, 1994; Schrage et al., 2005). The

example implementation of the quicksort algorithm illustrates this.
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B.3.2 Classes and Instances

Classes are a specific feature of the Haskell programming language. A type class
is equivalent to an algebra of types. The elements of a type class are called the
instances of the class. Haskell predefines a number of classes shown in figure 5.1,
in its prelude file. User defined classes can be built in the same way as illustrated
in the examples below.

Eq

/ \

/ 0\

Ord \ Text

/ \ \ /

/ 0\ \ /
/ Enum Num
/ \ /N

Ix \/ A\

\ Real Fractional
\ /N /N

\ / N/ N\
Integral RealFrac Floating

N/
\ /
RealFloat

Figure B.1: Hierarchy of Haskell classes

On the top of the hierarchy there is the class Eq. It defines the collection of types
with which the equality of two elements can be tested. The class declaration
of Eq is given below. It consists of a class Name followed by a signature. The
signature is a list of names and their types. The equality operation (==) takes

two types and returns a Boolean value.

class Eq a where

(==) :: a -> a -> Bool

In order to make an arbitrary type a member of the class Eq an implementation
has to be provided. Members of a type class are called instances. Haskell

defines instances for Int, Float, Bool and Char for Eq. Furthermore a default
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implementation for the class Eq is given that can be overwritten with a new
implementation.

The equality between two different types may differ. The equality of two
natural numbers may be implemented by simply comparing their values, while
the equality of two strings may be based on comparing the length of the two
strings. Different instances may be defined. The appropriate implementation
will be overloaded for the corresponding type. This way type classes implement

the ad-hoc polymorphism mentioned earlier.

instance Eq Int where
(==)ab=a==
instance Eq String where

(==) a b = length a == length b

A user can define algebraic types in a three step procedure. Firstly a class dec-
laration has to be provided. Secondly a representation for a data type has to be
defined using sum types or type aliases. Thirdly an implementation has to be

given through instances of the class.

data Point = Point Float Float
class Points p where

getX :: p -> Float

getY :: p -> Float

instance Points Point where
getX (Point x y) = x

getY (Point x y) =y

Haskell also offers a mechanism of inheritance, similar to object oriented pro-
gramming languages. The class Ord can be derived from the class Eq. Ord defines
the class of ordered types. The class Ord defines the operations to compare types
like <, <=, >, >= . The definition of equality, defined by the == operator is
inherited of the class Eq.

class Eq a => Ord a where
(<),(<=),(>),(>=) :: a -> a -> Bool

In the sample code above the => operator indicates that Ord is derived from Eq.
The operator => refers to the context of a class. In the example that means for
any type a that is declared and implemented belonging to Ord there has to be

also a declaration and implementation belonging to Eq.
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In the present thesis classes represent spatial theories. The classes can depend
on a single or multiple parameter. Using classes hierarchies for theories can be
built.

B.3.3 Modularization

Haskell programs can be split into different modules. Modules are parts of a
computer program that can be maintained independently. Modules can be reused
and avoid unnecessary copying of code. Each module can be compiled on its own.
Modules help to deal complexity by splitting the problem into simple parts that
can be studied individually.

Each theory has been implemented in an own module. A module contains the
code for a theory, perceptions and test data. The mechanism to evaluate theories
has been implemented as its own module. Modules can be exchanged in order to

improve and extend the model.

B.4 Summary

Spatial theories are described with algebraic specifications. A change in the al-
gebraic structure is reflected in an adaptation of axioms. We use algebra in
its simplest definition as a set of sorts, operations, and axioms (Loeckx et al.,
1996). The advantage of using algebra for modeling is its mathematical sound-
and compactness, e.g the reuse of code by defining sub algebras and combining
different algebras (Frank, 1999). The functional programming paradigm with
algebraic specifications was used to carry out a prototypical implementation. Es-
pecially high order functions and polymorphism have been utilized to implement
the model.
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Haskell Code

C.1 Objects - Definitions

module Definitions where

-- OBJECTS

type Object = Int -- objects are just numbered entities
—-- EXPERIMENTS

type ID = Int

type Time = Int

type ValExp = Float

type Affordance = String

type Exp = (Object,0bject,Bool)

type ExpSerie = [Exp]

data Observation = 0 [Affordance] ExpSerie deriving Show

maxNumberIterations = 4

—-- THEORIES

type Weight Float

type Operation = (Object->Object->Bool)

data Theory = T ID [Affordance] Operation Weight deriving Show

type Theories = [Theory]
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instance Eq Theory where

(

data
data
data
data
data

data
data

Redescriptionl
Redescription2
Redescription3
Redescription4

Redescriptionb

Redescription6

Redescription7

==) (Tiaopw) (Ti’ a’> op’ w’) =1 == 1’

R1 deriving (Eq,Show) -- stages of theories
R2 deriving (Eq,Show)
R3 deriving (Eq,Show)
R4 deriving (Eq,Show)
R5 deriving (Eq,Show)

LooseFit deriving (Show)
TightFit deriving (Show)

-- Access to Observations and Theories

class Observations obs where

getObsAff

getExpSerie ::

:: obs -> [Affordance]
obs -> ExpSerie

instance Observations Observation where

getObsAff (0 a e)

= a

getExpSerie (0 a e) = e

instance Observations [Observation] where
getObsAff list

getExpSerie list

class Th theory where
getTAff

concat [getObsAff o |o<-list]

concat [getExpSerie o |o<-list]

:: theory -> [Affordance]

instance Th Theory where
getTAff (Tiaow =a

instance (Th t) => Th [t] where
getTAff list

getWeight ::

concat [getTAff t1 | ti<-list]

Theory -> Weight

getWeight (T i a o w) = w

getOpList ::

[Theory] -> [(Object->0bject->Bool)]

getOpList tlist = [opl|(T i a op w)<-tlist]

-- useful auxilliary functions

-- ’showing’ a function

instance Show (a->b) where

show x = "Function"

133
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showlist :: (Show a) => [a] -> String
showlist [] ="
showlist list = show (head list) ++ "\n" ++ showlist (tail list)

inSide ::(Eq a) => [a] -> [a] -> Bool
inSide alist blist = and [(elem b alist)|b<-blist]
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C.2 Support of Objects

- SUPPORT THEORTIES

{- File: Support.hs, Support of Objects
Autor: Florian Twaroch
Relevant Experiments: Luo & Baillargeon 2004
Date: 18.10.2006

Revision: -

-- SUPPORT THEORTIES

module Support where

import Definitions

class Supporters r o where

isOn :: r -> o -> o -> Bool

-- 1st Theory considers just the contact between the objects
instance Supporters Redescriptionl Object where
isOn R1 ol 02 = getContact ol o2

- REPLACING THE THEORY

-- 2nd Theory specifies the type of contact
instance Supporters Redescription2 Object where
isOn R2 ol 02 = isOn R1 ol 02 &&

hasTopContact ol 02

-- 3rd Theory considers the amount of contact
instance Supporters Redescription3 Object where
isOn R3 ol 02 = isOn R2 ol 02 &&

hasSupportiveAmountContact ol o2

-- 4th Theory considers the shape of the supported object
instance Supporters Redescription4 Object where
isOn R4 ol 02 = isOn R3 ol 02 &&
hasSupportiveShape 02

- PERCEPTIONS//TESTDATA
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-- Support Experiment

-- conflicts in contact, amount and shape necessary

e_support, e_supportl,e_support2,e_support3,e_support4 :: ExpSerie

e_support = [(1,2,False)] -- contradict, conflict contact
e_supportl = [(3,4,False)] -- contradict Cl1, conflict TopContact
e_support2 = [(5,6,False)] -- contradict C2, conflict amount
e_support3 = [(7,8,False)] -- contradict C3, conflict shape
e_support4 = [(9,10,True)] -- input set free of contradictions

- PERCEPTIONS - Support, these are access operations to sensors.

-- 1,2 conflict Contact

getContact 3 4 = True
getContact 56 6 = True
getContact 7 8 = True

getContact 9 10 = True

getContact False

-- 3,4 conflict TopContact
hasTopContact 5 6 = True
hasTopContact 7 8 = True
hasTopContact 9 10 = True
hasTopContact _ = False

-- 5,6 conflict Amount

hasSupportiveAmountContact 3 4 = True
hasSupportiveAmountContact 7 8 = True
hasSupportiveAmountContact 9 10 = True
hasSupportiveAmountContact _ _ = False

-- 7,8 conflict Shape

hasSupportiveShape 2 = True
hasSupportiveShape 4 = True
hasSupportiveShape 6 = True

hasSupportiveShape 10 = True
hasSupportiveShape _ = False

- SUPPORT THEORTIES

aff :: [Affordance]
aff = ["Contact", "TopContact", "AmountContact","Shape",""]
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theories :: Theories

theories = [T 10 (take 1 aff) (isOn R1) 0.0,
T 11 (take 2 aff) (isOn R2) 0.0,
T 12 (take 3 aff) (isOn R3) 0.0,
T 13 (take 4 aff) (isOn R4) 0.0
]

testdata :: [Observation]

testdata = [0 [aff !! O] e_support,
[aff !! 1] e_supportl,
[aff !! 2] e_support2,
[aff !! 3] e_support3,

[1 e_support4 -- nub duplicates in affordances

— O o o o

- END SUPPORT THEORTIES
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C.3 Occlusion of Objects

- 0O0CCLUSION THEORTIES

{- File: Occlusion.hs, Occlusion of Objects
Autor: Florian Twaroch
Relevant Experiments: Luo & Baillargeon 2004
Date: 18.10.2006

Revision: -

-- 0CCLUSION THEORTIES

module Occlusion where

import Definitions

class Occluders r o where

isOccluded :: r -> o -> o -> Bool

-- 1st Theory: An object behind another is occluded.
instance Occluders Redescriptionl Object where

isOccluded R1 ol occ = isBehind ol occ

-- 2nd Theory: Occluders with windows do not work.
instance Occluders Redescription2 Object where
isOccluded R2 ol occ = isOccluded R1 ol occ &&

(not $ hasWindow occ)

-- 3rd Theory: The size of the occluded object matters.
instance Occluders Redescription3 Object where
isOccluded R3 ol occ = isOccluded R2 ol occ &&

ol < occ

—-- 4th Theory: A transparent occcluder does not hide the occluded object.
instance Occluders Redescription4 Object where
isOccluded R4 ol occ = isOccluded R3 ol occ && -- Spatial Relation
isTransparent’ R2 occ -- windows, Baillargeon 2004

-- dimensions,width & height

- GENERALIZING TO A NEW THEORY OF TRANSPARENCY

class Transparency r o where

isTransparent’ :: r -> o -> Bool

-- Theory of Transparency
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instance Transparency Redescriptionl Object where

isTransparent’ R1 ol = isTransparent ol

-- Theory of nonTransparency
instance Transparency Redescription2 Object where

isTransparent’ R2 ol = not $ isTransparent ol

- SPECIALIZING THE OCCLUSION THEORY

—-- 5th theory: The occluder moved and the occluder and the object
-- share the same pos
instance Occluders Redescription5 Object where

isOccluded R5 ol occ = isOccluded R4 ol occ &&

(not $ (moved occ && (not $ samePos ol occ)))

- PERCEPTIONS//TESTDATA

-- Occlusion Experiments

-- conflicts in windows, size, transparency and movement are necessary

e_occlusion, e_occlusionl,e_occlusion2,e_occlusion3,e_occlusion4 :: ExpSerie
e_occlusion = [(1,2,True)]

e_occlusionl = [(3,4,False)] -- contradict Cl1, conflict window

e_occlusion2 = [(6,5,False)] -- contradict C2, conflict size 6 is bigger than 4
e_occlusion3 = [(7,8,False)] -- contradict C3, conflict transparency
e_occlusion4 = [(9,10,False)] -- contradict C4, conflict movement

-= PERCEPTIONS - Occlusion, these are access operations to sensors.

isBehind 1 2 = True
isBehind 3 4 = True
isBehind 6 5 = True
isBehind 7 8 = True
isBehind 9 10 = True
isBehind _ _ = False
hasWindow 4 = True

hasWindow _ = False
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isTransparent 8 = True

isTransparent _ = False

-- did the object moved
moved 10 = True

moved _ = False

-- position after movement
samePos 1 2 = True

samePos 3 4 = True

samePos 6 5 = True

samePos 7 8 = True

samePos = False

0O0CCLUSION THEORTIES

-- This list describes what the objects afford
aff :: [Affordance]
aff = ["isBehind",
"hasWindow",

theories

theories

"size",

"isTransparent",

"movedSamePos"

:: Theories

testdata ::

testdata

[T 1 (take
T 2 (take
T 3 (take
T 4 (take
T 5 (take

aff)
aff)
aff)
aff)
aff)

g W N e

[Observation]

—

0 [aff !!
[aff !!
[aff !!
[aff !!
[aff !!

O o o o

0] e_occlusion,

1] e_occlusioni,

(isOccluded R1) 0.0,
(isOccluded R2) 0.0,
(isOccluded R3) 0.0,
(isOccluded R4) 0.0,
(isOccluded R5) 0.0 ]

-- type of observations
—-- describes just the type of percept

2] e_occlusion2,

3] e_occlusion3,

4] e_occlusion4 ]

END

0OCCLUSION THEORTIES

140
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C.4 Coverage of Objects

- COVER THEORTIES

{- File: Support.hs, Support of Objects
Autor: Florian Twaroch
Relevant Experiments: Luo & Baillargeon 2004
Date: 18.10.2006

Revision: -

-- COVER THEORTIES

module Cover where

import Definitions

class Covers c o where

isUnder :: ¢ -> o -> o -> Bool

-- 1. Theory: The object under the cover moves iff the cover is down.
instance Covers Conceptl Object where
isUnder C1 ol cover = covered ol cover &&
( (not $ moved cover) ||

((not $ liftedBeforeMoved cover) && samePosAfter ol cover)

-- 2nd. Theory: The object under the cover iff it is smaller than the cover.
instance Covers Concept2 Object where
isUnder C2 ol cover = isUnder C1 ol cover &&

(o1 < cover)

-- 3rd. Theory: The object is hidden under the cover iff the cover is not transparent
- or the previous axioms
instance Covers Concept3 Object where

isUnder C3 obj cover = (not $ isTransparent cover) &&

isUnder C2 obj cover

- PERCEPTIONS//TESTDATA

-- Cover Experiments

e_cover, e_coverl, e_cover2, e_cover3 :: ExpSerie
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e_cover = [(1,2,True)]
e_coverl = [(4,3,False)]
e_cover2 = [(5,6,False)]

e_cover3 = [(7,8,True)]

- PERCEPTIONS - Support, these are access operations to sensors.

covered 1 2 = True

covered 4 3 = True

covered 5 6 = True

covered 7 8 = True

covered _ _ = False

moved 2 = True

moved 3 = False

moved 6 = False

moved 8 = False

moved _ = error "no perception defined"
liftedBeforeMoved 2 = False
liftedBeforeMoved 3 = True
liftedBeforeMoved 6 = True
liftedBeforeMoved 8 = True
liftedBeforeMoved _ = error "no perception defined"

samePosAfter 1 2 = True

samePosAfter _ _ = error "no perception defined"

isTransparent 6 = True

isTransparent _ = False
- COVER THEORTIES
aff :: [Affordance]
aff = [u n
]

theories :: [([Affordance], (Object->0Object->Bool))]
theories = [(aff,isUnder C1),

(aff,isUnder C2),

(aff,isUnder C3)]
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testdata :: [([Affordance],ExpSerie)]

testdata = [(aff,e_cover),
(aff,e_coverl),
(aff,e_cover2),

(aff,e_cover3)]

- END COVER THEORTIES

0l,02 :: Object

ol =4
02 =3
test :: Bool

test = isUnder C1 ol o2
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C.5 Containment of Objects

- CONTAINMENT THEORTIES

{- File: Containment.hs, Containment of Rigid Objects
Autor: Florian Twaroch
Relevant Experiments: Luo & Baillargeon 2004
Date: 18.10.2006

Revision: -

-- CONTAINMENT THEORTIES

module Containment where

import Definitions

class Containment r o where

isIn :: r -> o -> o -> Bool

-- 1st Theory: the container has to be open.
instance Containment Redescriptionl Object where

isIn R1 obj co = isOpen co

-- 2nd Theory: The object in the container shares the movement with the container
instance Containment Redescription2 Object where
isIn R2 obj co = isIn R1 obj co &&

((not $ moved co) || (moved co && samePosAfter obj co))

-- 3rd Theory: The contained object has to be smaller.
instance Containment Redescription3 Object where
isIn R3 obj co = isIn R2 obj co &&
(obj < co)

—-- LooseFit Containment
instance Containment Redescription4 Object where
isIn R4 obj co = isIn R3 obj co &&
fit R1 obj co

-- Tightfit Containment
instance Containment Redescriptionb5 Object where
isIn R5 obj co = isIn R3 obj co &&
fit R2 obj co

- GENERALIZING TO A NEW THEORY



Appendix C - Haskell Code 145

-- Loose and tight fit containment require Fit as generalized super class

class Fit c¢ o where
fit :: ¢ -> o => o -> Bool

instance Fit Redescriptionl Object where
fit R1 ol 02 = moveable ol 02

instance Fit Redescription2 Object where
fit R2 ol 02 = not $ moveable ol 02

- PERCEPTIONS//TESTDATA

—-- Support Experiment

-- conflicts in size, amount and shape necessary

e_containment, e_containmentl, e_containment2 :: ExpSerie

e_containmentLR1, e_containmentTR1 :: ExpSerie

e_containment [(1,2,True)]

e_containmentl = [(3,4,False)] -- contradict R1, conflict movement
e_containment?2 = [(6,5,False)] -- contradict R2, conflict size
e_containmentLR1 = replicate 3 (7,8,False) -- contradict R3, conflict moveable inside

e_containmentTR1 = replicate 10 (9,10,True)

- PERCEPTIONS - Support, these are access operations to sensors.

isOpen 2 = True
isOpen 4 = True
isOpen 5 = True
isOpen 8 = True

isOpen 10 = True

isOpen False -- error "Container has no opening!"
-- did the object move

moved 4 = True

moved 8 = True

moved 10 = True

moved _ = False

-- position after movement
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samePosAfter
samePosAfter
samePosAfter
samePosAfter
samePosAfter

samePosAfter

12
43
6 5
78
9 10

True
False
True
True
True

False

—-- moveable inside container

moveable 1 2 = True
moveable 3 4 = True
moveable 6 5 = True
moveable 9 10 = False
moveable _ = False
- CONTAINMENT THEORTIES
aff :: [Affordance]
aff = ["isOpen",
"movement",
"size",
"loosefit",
"tightfit"
]
theories :: Theories
theories = [T 21 (take 1 aff) (isIn R1) 0.0,
T 22 (take 2 aff) (isIn R2) 0.0,
T 23 (take 3 aff) (isIn R3) 0.0,
T 24 (take 4 aff) (isIn R4) 0.0,
T 25 (take 5 aff) (isIn R5) 0.0
1
testdata :: [Observation]
testdata = [0 [aff !! 0] e_containment,
0 [aff !! 1] e_containmentl,
0 [aff !! 2] e_containment2,
0 [aff !! 3] e_containmentLR1,
0 [aff !! 4] e_containmentTR1
]
- END CONTAINMENT THEORTIES
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C.6 Balance Scale Task

{-
Author: Florian Twaroch
Topic: Sandbox Geography, PhD

Balance Scale Task

relevant experiments: Siegler 1976, Siegler 1983, etc.
Date: August 2005
Revision: 09.12.2005

Comment :
Robert Sieglers Balance Scale experiment (1976) identified four
naive rules for a fulcrum to be in balance. Children might experience
the balance scale on a playground on a swing.
0==0==0==0===0===0==0==0==0
[
Il

fulcrum with 0 (1,2,..) weights

Axioms:: empty fulcrum == Balanced
When testing ensure that left and right arm have equal length !!!

-}

module BalanceScale where
import Definitions

type Left = [Int]

type Right = [Int]

data Fulcrum = F Left Right

-= Null stands for guessing the solution
data Side = LeftSide | RightSide | Balanced | Null deriving (Eq,Show)

class Fulcrums c where

tip::c->Fulcrum->Side->Bool
instance Show Fulcrum where

show (F 1 r) = show (reverse 1) ++ "-o-" ++ show r

instance Fulcrums Fulcrum where
tip ¢ (F [1 []) side = Balanced == side
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—-- Concept I starts with an initial rule about balance scales based on the
-- weight of the items piled on the fulcrum. An alternative would
-- be to conceptualize the distance instead of the weight as the influencing

-- element.

instance Fulcrums Conceptl where
tip C1 (F 1 r) side = weight (F 1 r) == side

instance Fulcrums Concept2 where
tip C2 (F 1 r) side = distance (F 1 r) == side

-- the weight is determined by summing up the items seen on each side
-— of the fulcrum
weight: :Fulcrum->Side
weight (F 1 r)
[sum 1 > sum r = LeftSide
[sum 1 < sum r = RightSide
|otherwise = Balanced

distance: :Fulcrum->Side
distance (F 1 r)

|dist 1 > dist r = LeftSide
|dist 1 < dist r = RightSide
|otherwise = Balanced

-- determines the length of a list, depending on the position
-- of the weight, maximal outer position
dist::[Int]->Int
dist [1 =0
dist 1
[last 1 == 0 = dist(init 1)
|otherwise = length 1

-- Concept III is a generalization step out of the concepts I and II.

-- Both weight and distance influence the balance scale.

instance Fulcrums Concept3 where
tip C3 (F 1 r) side
|weight (F 1 r) == Balanced = distance (F 1 r) == side

|otherwise = weight (F 1 r) == side

—-- Concept IV is a trial to create a more complex naive theory by introducing
-- special cases (specialization) and generalization steps.
-- The theory makes use of guessing, that is why it does not perform as good as

-- naive theory III in the given test cases.

instance Fulcrums Concept4 where
tip C4 (F 1 r) side
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|weight (F 1 r) == Balanced = distance (F 1 r) == side
testWeight (F 1 r) == side

|otherwise

-- Because distance alone does not lead to a decision
-- weight must be tested once again.

testWeight: :Fulcrum->Side

testWeight (F 1 r)

|distance (F 1 r) == Balanced

weight (F 1 r)
testDistanceANDWeight (F 1 r)

|otherwise

testDistanceANDWeight: :Fulcrum->Side
testDistanceANDWeight (F 1 r)
|distance (F 1 r) == weight (F 1 r) = weight (F 1 r)

|otherwise

Null -- can not decide and must guess

-- Conceptb represents the torque rule to describe weights on a fulcrum.

-- To develop the concept measurement is required.

instance Fulcrums Conceptb5 where
tip C5 (F 1 r) side = cross (F 1 r) == side

-- The rule should be expressed in terms of weight and distance.

cross: :Fulcrum->Side

cross (F 1 r)

| cp 1 > cp r = LeftSide -= Cp ... the cross product of mass and distance
| cp 1 < cp r = RightSide

| otherwise = Balanced where

cp::[Int]->Int

cp 1ls = sum (zipWith (%) 1s [1..])

- PERCEPTIONS//TESTDATA

-- test cases according to Siegler 1976

f1,£f2,£3,f4,f5,f6 :: Fulcrum

f1 = F [2,1,0,0] [2,1,0,0] -- Balance

f2 = F [0,2,1,0] [1,1,0,0] -- Weight

£f3 = F [0,0,3,0] [0,3,0,0] -- Distance

f4 = F [0,2,2,0] [0,0,0,2] -- Conflict Weight
f5 = F [0,0,3,0] [2,3,0,0] -- Conflict Distance
f6 = F [0,3,0,0] [6,0,0,0] -- Conflict Balance

- PERCEPTIONS - Support, these are access operations to sensors.

—- observations
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01,02,03,04,05,06:: [(Fulcrum,Side,Bool)]

ol = [(f1,Balanced,True)]
02 = [(f2,LeftSide,True)]
03 = [(£3,LeftSide,True)]
04 = [(f4,LeftSide,True)]
o5 = [(f5,LeftSide,True)]
06 = [(f6,Balanced,True)]
- BALANCE SCALE THEORTIES
aff :: [Affordance]
aff = [""]
theories :: [([Affordance], (Fulcrum->Side->Bool))]
theories = [(aff,tip C1),
(aff,tip C2),
(aff,tip C3),
(aff,tip C4),
(aff,tip C5)]
testdata :: [([Affordance], [(Fulcrum,Side,Bool)])]
testdata = [(aff,o0l),
(aff,02),
(aff,03),
(aff,o04),
(aff,05),
(aff,06)]

END BALANCE SCALE THEORTIES
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C.7 Simulation

module NewSim where
import Definitions

import Support
import Occlusion

import Containment
import List

-- States of the agent

data State = Observe | Build | Test | Use | GiveUp deriving (Show,Eq)

type Potential = Theories -- The agent could theoretically build up all possible theories.
-- The model is simplified here as I did not automate the process
-- of theory building.

-- Building theories means to choose out of the potential.
data Agent = Agent ID Observation Theories Potential State

class Agents ag where

observe :: Observation -> ag -> ag -- get observations of the environment
buildTheories i1 ag —> ag
testTheories 1 ag —> ag
useTheories 11 ag —> ag

instance Agents Agent where
observe (0 aff []) (Agent iD o t p s) = (Agent iD (0 aff []) t p GiveUp)
observe exps (Agent iD o t p Observe) = (Agent iD exps t p Test)
observe exps (Agent iD o t p Build) = (Agent iD o t p Build)

-- The potential desribes all possible theories the agent could make
-- through an inferencing process. They are hard coded and not build.

-- The agent chooses among them.

buildTheories (Agent iD o t p Build)
Inewt == [] = (Agent iD o t p GiveUp) -- error "No new theories detected !"
|otherwise = (Agent iD o (t++newt) p Test) where
t’ = [ptlpt<-p, (inSide (getObsAff o) (getTAff pt))]
newt = [nt|nt<-t’,not (elem nt t)] -- New theories are just those
buildTheories ag = ag -- that the agent haven’t had before.

-- testing observed data with current theory

testTheories (Agent iD o t p Test) = (Agent iD o wt p newState) where
newState = determineState wt
-- weighted theories
wt = [(T i a op (evalExp op testdata’))|(T i a op w)<-t]
-- need as much testdata as theories
testdata’’ = replicate (length t) testdata’
testdata’ = getExpSerie o
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testTheories ag = ag

useTheories (Agent iD o t p s)

|s == Use = (Agent iD o t p Observe) -- apply theory to novel data
|s == Build = (Agent iD o t p Build) -- build a new theory
|s == GiveUp = error "No percepts or theories found that fit the data."

instance Show Agent where

show (Agent iD obs theories p state) = ".......... ... ..., \n" ++
"Agent id: " ++ show (iD) ++ "\n" ++
"Detected percepts:" ++ showlist (getObsAff obs) ++ "\n" ++
"Observations: " ++ show (getExpSerie obs) ++ "\n" ++
"Current theories: " ++ showlist (theories) ++ "\n" ++
"State: " ++ show state ++ "\n" ++
A \n"

- EVALUATION METHOD

class (Show a, Show b) => Evaluation a b where
testExp :: a ->b ->D
testExps :: a -> [b] -> [b] -- Evaluates a serie of experiments.

testExps f e = map (testExp f) e

evalExp :: a -> [b] -> Float —- Number of hits in an experiment is a
-- utility score -> 0.0 - 1.0

-- Evaluation of Experiments having two objects, mapped on an equivalence class

instance Evaluation (Object->0Object->Bool) (Object,0Object,Bool) where
testExp f e@(ol,02,0observation) = (ol,02,evidence) where

observation == belief

f ol 02

evidence
belief

evalExp f e = no_hits / no_exps where
no_hits = fromIntegral (length hits)
no_exps = fromIntegral (length e)
hits = [(01,02,t)|(01,02,t)<-(testExps f e),t==Truel

—-- Theories that fully explain the world are immediatelly

-- without any efforts undertaken to search for another theory (explaination).

determineState :: [Theory] -> State

determineState [] = error "Can not find any theory that fits the given data."

determineState t -- Agent holds a theory that fully explains the given data.
lany (==1.0) $ map (getWeight) t = Use —-- therefore no need to change
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|otherwise

= Build

SIMULATION

agl :: Agent
agl = Agent 1
(o0

-- no observations

[Occlusion.theories !! 0] -- holds unweighted theories

Occlusion.theories

Observe

ag2 :: Agent

ag2 = Agent 2
(o0
[Support.theories

Support.theories

-- potentially possible theories

-- state: willing to explore

-- no observations
10l -- holds unweighted theories

-- potentially possible theories

Observe -- state: willing to explore
ag3 :: Agent
ag3 = Agent 3
(o 0 m -- no observations
[Containment.theories !! 0] -- holds unweighted theories

Containment.theories

Observe

-- potentially possible theories

-- state: willing to explore

sim :: Time -> [Observation] -> Agent -> String

sim time [] ag = error "End of

sim time obs ag

[time > (length obs + 2) =

|otherwise =

Simulation - no data in the environment"

"Agent getting bored - no new data\n" ++
"CHECK Simulation time limit"

show "Time: " ++ show (time’) ++ "\n" ++
" \nll ++
"observing environment ... \n" ++
n \Il" ++

show (observe obs’ ag) ++

n \nll ++
"building theories ... \n" ++
" \nll ++

show (buildTheories $ (observe obs’ ag)) ++

" \n" ++
"testing theories ... \n" ++
n \1’1" ++

show (testTheories $ buildTheories
$ (observe obs’ ag)) ++
n \nll ++

153

-- otherwise tries a better explaination.
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"using theories ... \n" ++
" \n" ++

show (useTheories $ testTheories
$ buildTheories

$ (observe obs’ ag)) ++

n \nll ++

(sim time’ obs ag’) where
ag’ = useTheories $ testTheories $ buildTheories $ (observe obs’ ag)
time’ = time + 1
obs’ = (0 r_aff r_obs) -- reduce the data

r_aff = take time’ (getObsAff obs)
take time’ (getExpSerie obs)

r_obs

—-- Simulation of Occlusion of Solids
f = putStrLn (sim O (Occlusion.testdata) agl)

-- Simulation of Support of Solids
1 = putStrLn (sim O (Support.testdata) ag2)

—-- Simulation of Containment of Solids
o = putStrLn (sim O (Containment.testdata) ag3)
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Simulation Output

D.1 Simulation - Theories “Occlusion of Solids”

*NewSim> simulate "Occlusion"
Loading package haskell98-1.0 ... linking ... done.

"Time: "1

observing environment ...

Agent id: 1
Detected percepts:"isBehind"

Observations: [(1,2,True)]
Current theories: T 1 ["isBehind"] Function 0.0

State: Test

Agent id: 1
Detected percepts:"isBehind"

Observations: [(1,2,True)]
Current theories: T 1 ["isBehind"] Function 0.0

State: Test

155
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Agent id: 1

Detected percepts:"isBehind"

Observations: [(1,2,True)]

Current theories: T 1 ["isBehind"] Function 1.0

State: Use

Agent id: 1
Detected percepts:"isBehind"

Observations: [(1,2,True)]

Current theories: T 1 ["isBehind"] Function 1.0

State: Observe

"Time: "2

observing environment

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

Observations: [(1,2,True), (3,4,False)]

Current theories: T 1 ["isBehind"] Function 1.0

State: Test

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

Observations: [(1,2,True), (3,4,False)]

Current theories: T 1 ["isBehind"] Function 1.0

State: Test

testing theories
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Agent id: 1
Detected percepts:"isBehind"

"hasWindow"

Observations: [(1,2,True),(3,4,False)]

Current theories: T 1 ["isBehind"] Function 0.5

State: Build

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

Observations: [(1,2,True), (3,4,False)]

Current theories: T 1 ["isBehind"] Function 0.5

State: Build

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

Observations: [(1,2,True), (3,4,False)]

Current theories: T 1 ["isBehind"] Function 0.5

State: Build

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

Observations: [(1,2,True), (3,4,False)]
Current theories: T 1 ["isBehind"] Function 0.5

T 2 ["isBehind","hasWindow"] Function 0.0

State: Test
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Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

Observations: [(1,2,True), (3,4,False)]
Current theories: T 1 ["isBehind"] Function 0.5
T 2 ["isBehind","hasWindow"] Function 1.0

State: Use

Agent id: 1
Detected percepts:"isBehind"

"hasWindow"

Observations: [(1,2,True), (3,4,False)]
Current theories: T 1 ["isBehind"] Function 0.5
T 2 ["isBehind","hasWindow"] Function 1.0

State: Observe

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

"gize"

Observations: [(1,2,True), (3,4,False), (6,5,False)]
Current theories: T 1 ["isBehind"] Function 0.5
T 2 ["isBehind","hasWindow"] Function 1.0

State: Test

Agent id: 1
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Detected percepts:"isBehind"
"hasWindow"

"gize"

Observations: [(1,2,True),(3,4,False), (6,5,False)]
Current theories: T 1 ["isBehind"] Function 0.5
T 2 ["isBehind","hasWindow"] Function 1.0

State: Test

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

"size"

Observations: [(1,2,True),(3,4,False),(6,5,False)]

Current theories: T 1 ["isBehind"] Function 0.33333334

T 2 ["isBehind","hasWindow"] Function 0.6666667

State: Build

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

"gize"

Observations: [(1,2,True),(3,4,False),(6,5,False)]

Current theories: T 1 ["isBehind"] Function 0.33333334

T 2 ["isBehind","hasWindow"] Function 0.6666667

State: Build

"Time: "5

observing environment

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

"gize"
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Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 1 ["isBehind"] Function 0.33333334
T 2 ["isBehind","hasWindow"] Function 0.6666667

State: Build

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

"gize"

Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 1 ["isBehind"] Function 0.33333334
T 2 ["isBehind","hasWindow"] Function 0.6666667

T 3 ["isBehind","hasWindow","size"] Function 0.0

State: Test

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

"size"

Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 1 ["isBehind"] Function 0.33333334
T 2 ["isBehind","hasWindow"] Function 0.6666667

T 3 ["isBehind","hasWindow","size"] Function 1.0

State: Use

Agent id: 1
Detected percepts:"isBehind"
"hasWindow"

"gize"

Observations: [(1,2,True), (3,4,False), (6,5,False)]
Current theories: T 1 ["isBehind"] Function 0.33333334
T 2 ["isBehind","hasWindow"] Function 0.6666667

T 3 ["isBehind","hasWindow","size"] Function 1.0
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State: Observe

"Time: "6

observing environment

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"size"

"isTransparent"

Observations: [(1,2,True), (3,4,False), (6,5,False),(7,8,False)]
Current theories: T 1 ["isBehind"] Function 0.33333334
T 2 ["isBehind","hasWindow"] Function 0.6666667

T 3 ["isBehind","hasWindow","size"] Function 1.0

State: Test

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"size"

"isTransparent"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]
Current theories: T 1 ["isBehind"] Function 0.33333334
T 2 ["isBehind","hasWindow"] Function 0.6666667

T 3 ["isBehind","hasWindow","size"] Function 1.0

State: Test

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"Size"

"isTransparent"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]

Current theories: T 1 ["isBehind"] Function 0.25

161
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T 2 ["isBehind","hasWindow"] Function 0.5

T 3 ["isBehind","hasWindow","size"] Function 0.75

State: Build

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"size"

"isTransparent"

Observations: [(1,2,True), (3,4,False),(6,5,False),(7,8,False)]
Current theories: T 1 ["isBehind"] Function 0.25

T 2 ["isBehind","hasWindow"] Function 0.5

T 3 ["isBehind","hasWindow","size"] Function 0.75

State: Build

"Time: "7

observing environment

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"size"

"isTransparent"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]
Current theories: T 1 ["isBehind"] Function 0.25
T 2 ["isBehind","hasWindow"] Function 0.5

T 3 ["isBehind","hasWindow","size"] Function 0.75

State: Build

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"size"

"isTransparent"
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Observations: [(1,2,True), (3,4,False),(6,5,False),(7,8,False)]
Current theories: T 1 ["isBehind"] Function 0.25

T 2 ["isBehind","hasWindow"] Function 0.5

T 3 ["isBehind","hasWindow","size"] Function 0.75

T 4 ["isBehind", "hasWindow","size","isTransparent"] Function 0.0

State: Test

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

llsizell

"isTransparent"

Observations: [(1,2,True), (3,4,False),(6,5,False),(7,8,False)]
Current theories: T 1 ["isBehind"] Function 0.25

T 2 ["isBehind","hasWindow"] Function 0.5

T 3 ["isBehind","hasWindow","size"] Function 0.75

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 1.0

State: Use

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

llsizell

"isTransparent"

Observations: [(1,2,True), (3,4,False),(6,5,False), (7,8,False)]
Current theories: T 1 ["isBehind"] Function 0.25

T 2 ["isBehind","hasWindow"] Function 0.5

T 3 ["isBehind","hasWindow","size"] Function 0.75

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 1.0

State: Observe

"Time: "8

observing environment

Agent id: 1
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Detected percepts:"isBehind"
"hasWindow"

Ilsizell

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]

Current theories: T 1 ["isBehind"] Function 0.25
T 2 ["isBehind","hasWindow"] Function 0.5

T 3 ["isBehind","hasWindow","size"] Function 0.75

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 1.0

State: Test

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

llsizell

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]

Current theories: T 1 ["isBehind"] Function 0.25
T 2 ["isBehind","hasWindow"] Function 0.5

T 3 ["isBehind","hasWindow","size"] Function 0.75

T 4 ["isBehind", "hasWindow","size","isTransparent"] Function 1.0

State: Test

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

llsizell

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]

Current theories: T 1 ["isBehind"] Function 0.2
T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

State: Build
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Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

Ilsizell

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]

Current theories: T 1 ["isBehind"] Function 0.2
T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

State: Build

"Time: "9

observing environment

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"SiZe"

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False), (6,5,False),(7,8,False), (9,10,False)]

Current theories: T 1 ["isBehind"] Function 0.2
T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

State: Build

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"size"

"isTransparent"

"movedSamePos"
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Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 0.0

State: Test

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"Size"

"isTransparent"

"movedSamePos"

Observations: [(1,2,True), (3,4,False),(6,5,False),(7,8,False),(9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Use

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

Ilsizell

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False), (6,5,False),(7,8,False), (9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Observe
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"Time: "10

observing environment

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

Ilsizell

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Test

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"Size"

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False), (9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind", "hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Test

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"size"

"isTransparent"

"movedSamePos"
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Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Use

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"Size"

"isTransparent"

"movedSamePos"

Observations: [(1,2,True), (3,4,False),(6,5,False),(7,8,False),(9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Observe

"Time: "11

observing environment

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

llsizell

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind", "hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Test
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Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

Ilsizell

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Test

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"Size"

"isTransparent"

"movedSamePos"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False), (9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind", "hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Use

Agent id: 1

Detected percepts:"isBehind"
"hasWindow"

"size"

"isTransparent"

"movedSamePos"
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Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,False)]
Current theories: T 1 ["isBehind"] Function 0.2

T 2 ["isBehind","hasWindow"] Function 0.4

T 3 ["isBehind","hasWindow","size"] Function 0.6

T 4 ["isBehind","hasWindow","size","isTransparent"] Function 0.8

T 5 ["isBehind","hasWindow","size","isTransparent","movedSamePos"] Function 1.0

State: Observe

Agent getting bored - no new data
CHECK Simulation time limit
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D.2 Simulation - Theories “Containment of Solids”

*NewSim> simulate "Containment"
Loading package haskell98-1.0 ... linking ... done.

"Time: "1

observing environment

Agent id: 3

Detected percepts:"isOpen"

Observations: [(1,2,True)]
Current theories: T 21 ["isOpen"] Function 0.0

State: Test

Agent id: 3

Detected percepts:"isOpen"

Observations: [(1,2,True)]
Current theories: T 21 ["isOpen"] Function 0.0

State: Test

Agent id: 3

Detected percepts:"isOpen"

Observations: [(1,2,True)]
Current theories: T 21 ["isOpen"] Function 1.0

State: Use

Agent id: 3

Detected percepts:"isOpen"

Observations: [(1,2,True)]
Current theories: T 21 ["isOpen"] Function 1.0
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State: Observe

"Time: "2

observing environment

Agent id: 3
Detected percepts:"isOpen"

"movement"

Observations: [(1,2,True),(3,4,False)]

Current theories: T 21 ["isOpen"] Function 1.0

State: Test

Agent id: 3
Detected percepts:"isOpen"

"movement"

Observations: [(1,2,True),(3,4,False)]

Current theories: T 21 ["isOpen"] Function 1.0

State: Test

Agent id: 3
Detected percepts:"isOpen"

"movement"

Observations: [(1,2,True), (3,4,False)]

Current theories: T 21 ["isOpen"] Function 0.5

State: Build

Agent id: 3
Detected percepts:"isOpen"

"movement"
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Observations: [(1,2,True),(3,4,False)]
Current theories: T 21 ["isOpen"] Function 0.5

State: Build

"Time: "3

observing environment

Agent id: 3
Detected percepts:"isOpen"

"movement"

Observations: [(1,2,True), (3,4,False)]
Current theories: T 21 ["isOpen"] Function 0.5

State: Build

Agent id: 3
Detected percepts:"isOpen"

"movement"

Observations: [(1,2,True),(3,4,False)]
Current theories: T 21 ["isOpen"] Function 0.5

T 22 ["isOpen","movement"] Function 0.0

State: Test

Agent id: 3
Detected percepts:"isOpen"

"movement"

Observations: [(1,2,True), (3,4,False)]
Current theories: T 21 ["isOpen"] Function 0.5

T 22 ["isOpen","movement"] Function 1.0

State: Use

using theories ...
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Agent id: 3
Detected percepts:"isOpen"

"movement"

Observations: [(1,2,True), (3,4,False)]
Current theories: T 21 ["isOpen"] Function 0.5

T 22 ["isOpen","movement"] Function 1.0

State: Observe

"Time: "4

observing environment

Agent id: 3

Detected percepts:"isOpen"
"movement"

llsizell

Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 21 ["isOpen"] Function 0.5

T 22 ["isOpen","movement"] Function 1.0

State: Test

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 21 ["isOpen"] Function 0.5

T 22 ["isOpen","movement"] Function 1.0

State: Test

Agent id: 3
Detected percepts:"isOpen"

"movement"
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"gize"

Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 21 ["isOpen"] Function 0.33333334
T 22 ["isOpen","movement"] Function 0.6666667

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

llsizell

Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 21 ["isOpen"] Function 0.33333334
T 22 ["isOpen","movement"] Function 0.6666667

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

Ilsizell

Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 21 ["isOpen"] Function 0.33333334
T 22 ["isOpen","movement"] Function 0.6666667

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

"SiZe"

Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 21 ["isOpen"] Function 0.33333334
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T 22 ["isOpen","movement"] Function 0.6666667

T 23 ["isOpen","movement","size"] Function 0.0

State: Test

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

Observations: [(1,2,True),(3,4,False),(6,5,False)]
Current theories: T 21 ["isOpen"] Function 0.33333334
T 22 ["isOpen","movement"] Function 0.6666667

T 23 ["isOpen","movement","size"] Function 1.0

State: Use

Agent id: 3

Detected percepts:"isOpen"
"movement"

"Size"

Observations: [(1,2,True), (3,4,False),(6,5,False)]
Current theories: T 21 ["isOpen"] Function 0.33333334
T 22 ["isOpen","movement"] Function 0.6666667

T 23 ["isOpen","movement","size"] Function 1.0

State: Observe

"Time: "6

observing environment

Agent id: 3

Detected percepts:"isOpen"
"movement"

"Size"

"loosefit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]
Current theories: T 21 ["isOpen"] Function 0.33333334
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T 22 ["isOpen","movement"] Function 0.6666667

T 23 ["isOpen","movement","size"] Function 1.0

State: Test

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]
Current theories: T 21 ["isOpen"] Function 0.33333334
T 22 ["isOpen","movement"] Function 0.6666667

T 23 ["isOpen","movement","size"] Function 1.0

State: Test

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]
Current theories: T 21 ["isOpen"] Function 0.25
T 22 ["isOpen","movement"] Function 0.5

T 23 ["isOpen","movement","size"] Function 0.75

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

"Size"

"loosefit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]

Current theories: T 21 ["isOpen"] Function 0.25
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T 22 ["isOpen","movement"] Function 0.5

T 23 ["isOpen","movement","size"] Function 0.75

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

llsizell

"loosefit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]
Current theories: T 21 ["isOpen"] Function 0.25
T 22 ["isOpen","movement"] Function 0.5

T 23 ["isOpen","movement","size"] Function 0.75

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

"Size“

"loosefit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]
Current theories: T 21 ["isOpen"] Function 0.25

T 22 ["isOpen","movement"] Function 0.5

T 23 ["isOpen","movement","size"] Function 0.75

T 24 ["isOpen","movement","size","loosefit"] Function 0.0

State: Test

Agent id: 3

Detected percepts:"isOpen"
"movement"

Ilsizell

"loosefit"
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Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]
Current theories: T 21 ["isOpen"] Function 0.25

T 22 ["isOpen","movement"] Function 0.5

T 23 ["isOpen","movement","size"] Function 0.75

T 24 ["isOpen","movement","size","loosefit"] Function 1.0

State: Use

Agent id: 3

Detected percepts:"isOpen"
"movement"

"SiZe"

"loosefit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False)]
Current theories: T 21 ["isOpen"] Function 0.25

T 22 ["isOpen","movement"] Function 0.5

T 23 ["isOpen","movement","size"] Function 0.75

T 24 ["isOpen","movement","size","loosefit"] Function 1.0

State: Observe

"Time: "8

observing environment

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.25

T 22 ["isOpen","movement"] Function 0.5

T 23 ["isOpen","movement","size"] Function 0.75

T 24 ["isOpen","movement","size","loosefit"] Function 1.0

State: Test

building theories ...
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Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False), (9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.25

T 22 ["isOpen","movement"] Function 0.5

T 23 ["isOpen","movement","size"] Function 0.75

T 24 ["isten","movement",“size","loosefit”] Function 1.0

State: Test

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False), (6,5,False),(7,8,False), (9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","movement"] Function 0.6

T 23 ["isOpen","movement","size"] Function 0.8

T 24 ["isOpen","movement","size","loosefit"] Function 0.8

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","movement"] Function 0.6

T 23 ["isOpen","movement","size"] Function 0.8

T 24 ["isOpen","movement","size","loosefit"] Function 0.8
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State: Build

"Time: "9

observing environment

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","movement"] Function 0.6

T 23 ["isOpen","movement","size"] Function 0.8

T 24 ["isOpen","movement","size","loosefit"] Function 0.8

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","movement"] Function 0.6

T 23 ["isOpen","movement","size"] Function 0.8

T 24 ["isOpen","movement","size","loosefit"] Function 0.8

T 25 ["isOpen","movement","size","loosefit","tightfit"] Function 0.0

State: Test

Agent id: 3
Detected percepts:"isOpen"

"movement"
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"size"
"loosefit"
"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","movement"] Function 0.6

T 23 ["isOpen","movement","size"] Function 0.8

T 24 ["isOpen","movement","size","loosefit"] Function 0.8

T 25 ["isOpen","movement","size","loosefit","tightfit"] Function 0.6

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","movement"] Function 0.6

T 23 ["isOpen","movement","size"] Function 0.8

T 24 ["isOpen","movement","size","loosefit"] Function 0.8

T 25 ["isOpen","movement",'"size","loosefit","tightfit"] Function 0.6

State: Build

"Time: "10

observing environment

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","movement"] Function 0.6

T 23 ["isOpen","movement","size"] Function 0.8

T 24 ["isOpen","movement","size","loosefit"] Function 0.8
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T 25 ["isOpen","movement","size","loosefit","tightfit"] Function 0.6

State: Build

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False), (9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","movement"] Function 0.6

T 23 ["isOpen","movement","size"] Function 0.8

T 24 ["isOpen","movement","size","loosefit"] Function 0.8

T 25 ["isOpen","movement","size","loosefit","tightfit"] Function 0.6

State: GiveUp

Agent id: 3

Detected percepts:"isOpen"
"movement"

"size"

"loosefit"

"tightfit"

Observations: [(1,2,True),(3,4,False),(6,5,False),(7,8,False),(9,10,True)]
Current theories: T 21 ["isOpen"] Function 0.4

T 22 ["isOpen","movement"] Function 0.6

T 23 ["isOpen","movement","size"] Function 0.8

T 24 ["isOpen","movement","size","loosefit"] Function 0.8

T 25 ["isOpen","movement","size","loosefit","tightfit"] Function 0.6

State: GiveUp

using theories ...

**x Exception: No percepts or theories found that fit the data.
*NewSim>
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2

D.3 Simulation - Theories “Support of Solids

Loading package haskell98-1.0 ... linking ... done.
>simulate "Support"

"Time: "1

observing environment

Agent id: 2
Detected percepts:"Contact"

Observations: [(1,2,False)]
Current theories: T 10 ["Contact"] Function 0.0

State: Test

Agent id: 2
Detected percepts:"Contact"

Observations: [(1,2,False)]
Current theories: T 10 ["Contact"] Function 0.0

State: Test

Agent id: 2
Detected percepts:"Contact"

Observations: [(1,2,False)]
Current theories: T 10 ["Contact"] Function 1.0

State: Use

Agent id: 2
Detected percepts:"Contact"

Observations: [(1,2,False)]
Current theories: T 10 ["Contact"] Function 1.0
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State: Observe

"Time: "2

observing environment

Agent id: 2
Detected percepts:"Contact"
"TopContact"

Observations: [(1,2,False),(3,4,False)]

Current theories: T 10 ["Contact"] Function 1.0

State: Test

Agent id: 2
Detected percepts:"Contact"
"TopContact"

Observations: [(1,2,False),(3,4,False)]

Current theories: T 10 ["Contact"] Function 1.0

State: Test

Agent id: 2
Detected percepts:"Contact"
"TopContact"

Observations: [(1,2,False), (3,4,False)]

Current theories: T 10 ["Contact"] Function 0.5

State: Build

Agent id: 2
Detected percepts:"Contact"
"TopContact"
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Observations: [(1,2,False),(3,4,False)]
Current theories: T 10 ["Contact"] Function 0.5

State: Build

"Time: "3

observing environment

Agent id: 2
Detected percepts:"Contact"
"TopContact"

Observations: [(1,2,False),(3,4,False)]
Current theories: T 10 ["Contact"] Function 0.5

State: Build

Agent id: 2
Detected percepts:"Contact"

"TopContact"

Observations: [(1,2,False),(3,4,False)]
Current theories: T 10 ["Contact"] Function 0.5

T 11 ["Contact","TopContact"] Function 0.0

State: Test

Agent id: 2
Detected percepts:"Contact"
"TopContact"

Observations: [(1,2,False),(3,4,False)]
Current theories: T 10 ["Contact"] Function 0.5
T 11 ["Contact","TopContact"] Function 1.0

State: Use

using theories ...
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Agent id: 2
Detected percepts:"Contact"
"TopContact"

Observations: [(1,2,False),(3,4,False)]
Current theories: T 10 ["Contact"] Function 0.5

T 11 ["Contact","TopContact"] Function 1.0

State: Observe

"Time: "4

observing environment

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

Observations: [(1,2,False),(3,4,False),(5,6,False)]
Current theories: T 10 ["Contact"] Function 0.5

T 11 ["Contact","TopContact"] Function 1.0

State: Test

Agent id: 2
Detected percepts:"Contact"
"TopContact"

"AmountContact"

Observations: [(1,2,False),(3,4,False),(5,6,False)]
Current theories: T 10 ["Contact"] Function 0.5

T 11 ["Contact","TopContact"] Function 1.0

State: Test

Agent id: 2
Detected percepts:"Contact"
"TopContact"
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"AmountContact"

Observations: [(1,2,False),(3,4,False),(5,6,False)]
Current theories: T 10 ["Contact"] Function 0.33333334
T 11 ["Contact","TopContact"] Function 0.6666667

State: Build

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

Observations: [(1,2,False),(3,4,False),(5,6,False)]
Current theories: T 10 ["Contact"] Function 0.33333334
T 11 ["Contact","TopContact"] Function 0.6666667

State: Build

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

Observations: [(1,2,False),(3,4,False),(5,6,False)]
Current theories: T 10 ["Contact"] Function 0.33333334
T 11 ["Contact","TopContact"] Function 0.6666667

State: Build

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

Observations: [(1,2,False),(3,4,False),(5,6,False)]
Current theories: T 10 ["Contact"] Function 0.33333334
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T 11 ["Contact","TopContact"] Function 0.6666667
T 12 ["Contact","TopContact","AmountContact"] Function 0.0

State: Test

Agent id: 2
Detected percepts:"Contact"
"TopContact"

"AmountContact"

Observations: [(1,2,False),(3,4,False),(5,6,False)]
Current theories: T 10 ["Contact"] Function 0.33333334

T 11 ["Contact","TopContact"] Function 0.6666667

T 12 ["Contact","TopContact","AmountContact"] Function 1.0

State: Use

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

Observations: [(1,2,False),(3,4,False),(5,6,False)]
Current theories: T 10 ["Contact"] Function 0.33333334

T 11 ["Contact","TopContact"] Function 0.6666667

T 12 ["Contact","TopContact","AmountContact"] Function 1.0

State: Observe

"Time: "6

observing environment

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False)]
Current theories: T 10 ["Contact"] Function 0.33333334
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T 11 ["Contact","TopContact"] Function 0.6666667
T 12 ["Contact","TopContact","AmountContact"] Function 1.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False)]
Current theories: T 10 ["Contact"] Function 0.33333334

T 11 ["Contact","TopContact"] Function 0.6666667

T 12 ["Contact","TopContact","AmountContact"] Function 1.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False)]
Current theories: T 10 ["Contact"] Function 0.25

T 11 ["Contact","TopContact"] Function 0.5

T 12 ["Contact","TopContact","AmountContact"] Function 0.75

State: Build

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False)]

Current theories: T 10 ["Contact"] Function 0.25
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T 11 ["Contact","TopContact"] Function 0.5
T 12 ["Contact","TopContact","AmountContact"] Function 0.75

State: Build

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False)]
Current theories: T 10 ["Contact"] Function 0.25

T 11 ["Contact","TopContact"] Function 0.5

T 12 ["Contact","TopContact","AmountContact"] Function 0.75

State: Build

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False), (3,4,False),(5,6,False),(7,8,False)]
Current theories: T 10 ["Contact"] Function 0.25

T 11 ["Contact","TopContact"] Function 0.5

T 12 ["Contact","TopContact","AmountContact"] Function 0.75

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 0.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"
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Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False)]
Current theories: T 10 ["Contact"] Function 0.25

T 11 ["Contact","TopContact"] Function 0.5

T 12 ["Contact","TopContact","AmountContact"] Function 0.75

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Use

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False)]
Current theories: T 10 ["Contact"] Function 0.25

T 11 ["Contact","TopContact"] Function 0.5

T 12 ["Contact","TopContact","AmountContact"] Function 0.75

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Observe

"Time: "8

observing environment

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.25

T 11 ["Contact","TopContact"] Function 0.5

T 12 ["Contact","TopContact","AmountContact"] Function 0.75

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Test
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Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.25

T 11 ["Contact","TopContact"] Function 0.5

T 12 ["Contact","TopContact","AmountContact"] Function 0.75

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Use

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Observe
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"Time: "9

observing environment

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False), (5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False), (5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8
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T 13 ["Contact",”TopContact","AmountContact","Shape"] Function 1.0

State: Use

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Observe

"Time: "10

observing environment

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"
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Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Use

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Observe

"Time: "11

observing environment
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Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Test

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Use
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using theories

Agent id: 2

Detected percepts:"Contact"
"TopContact"
"AmountContact"

"Shape"

Observations: [(1,2,False),(3,4,False),(5,6,False),(7,8,False),(9,10,True)]
Current theories: T 10 ["Contact"] Function 0.4

T 11 ["Contact","TopContact"] Function 0.6

T 12 ["Contact","TopContact","AmountContact"] Function 0.8

T 13 ["Contact","TopContact","AmountContact","Shape"] Function 1.0

State: Observe

Agent getting bored - no new data
CHECK Simulation time limit
*NewSim>
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