CM0133 Internet Computing

Security in the Internet

Objectives - Security

- Security ?
- Cryptography
- En/Decryption, Symmetric, Public-Key
- Secure Communications
- Certificates, Transport-Layer-Security

Security for the WWW

- TCP and thus HTTP are clear-text protocols, which make no attempt to hide the data being transmitted. For secure data transfers, it thus is necessary to use additional technologies for providing secure data transfers.
- For the Web, the most interesting security feature are secure HTTP interactions, which are provided by HTTP over SSL (HTTPS), a protocol that layers an encryption layer (SSL or TLS) between TCP and HTTP.
- For any task involving personalization and/or trust, it is not only necessary to have a concept for providing privacy, but also to have concepts for identity and how to prove identity, which needs authentication.

Identification

- Identity is required for any non-anonymous communications
 - groups can have an identity (facebook members see more than nonmembers)
 - pseudonyms are "hidden identities" (the "real identity" is not visible)
 - personal identity should be tied to a person itself
- Proof of Identity is important for any privileged operation
 - signatures and seals are traditional ways
 - traditional ways are mostly protected by law (but not really safe)
 - more modern ways often include technical methods for Authentication
- Client identity on the Web can be bound in three ways:
 - 1. Computer (most of the time "identified" by an IP Address)
 - 2. Browser (in the form of a stored cookie)
 - 3. User (identified through some authentication method)

Authentication

- Authentication is the process of verifying an identity
 - the weakest form of authentication is simply trust
 - legal consequences can make it more risky to falsify authentication
 - technical measures should make it hard to impossible to falsify authentication
- Authentication on the Web comes in many different flavours
 - implicitly by accessing a server from some IP Address range
 - presenting a cookie from a previous formal authentication
 - presenting a password as a proof of identity
 - proving that you are owning additional authentication hardware (often PINenabled, see http://en.wikipedia.org/wiki/Personal_identification_number)
- Risk and potential damage should justify authentication methods

Authorization

- Authorization is the question of allowing operations
 - Identification is necessary to identify the initiator
 - Authentication is necessary to verify the initiator's identity
 - if the initiator is authorized, the operation can be performed
- Web pages often are public or restricted access
 - public web pages do not require any identification (and thus authentication)
 - restricted access Web pages can be group pages (internal company pages)
 - personal access is another popular scenario (email, facebook, online banking)
- Web servers have well-defined ways of performing authentication

Classroom Task

Pair Work: Identify Dangers in the Internet

Trust and Security on the Web

- Web-based applications introduce many risks
 - do you trust your browser? (it may not safeguard your information)
 - do you trust your computer? (it may have a virus)
 - do you trust your network? (it may be monitored on various levels)
 - do you trust the server? (it may be a fake phishing [http://en.wikipedia.org/wiki/Phishing] server)
- Most of these risks are amplified by the Web's scale
 - phishing and spamming only work because the Web makes fraud more effective
- Controlling Web access is important for safe browsing
 - trusting shared browsers is risky (they may store logins and cache pages)
 - trusting the network can be risky (more and more networks are wire-tapped)
 - trusting the server is risky (phishing and poor server security)

20 Internet Security

Privacy

۷	Firefox Preferences							Sec	irity
-×∟	-	×	00		۲Ô۶				unity
General Tabs	Content	Applications	Privacy	Security	Advanced	b			
🗹 <u>W</u> arn me wh	en sites try t	o install add-or	ıs		(<u>E</u> xceptions			
🗹 Block report	ed <u>a</u> ttack sit	es							
🗹 <u>B</u> lock report	ed web forge	eries							
Passwords									
🗹 <u>R</u> emember	☑ Bemember passwords for sites Exceptions								
Use a master password Change Master Password									
					Saved	d <u>P</u> asswords			
Warning Messa	ges								
Choose which warning messages you want to see while browsing the web Settings									
() Help						Close			

20 Internet Security

http://www.bbc.co.uk/dna/h2g2/alabaster/A233966

Cryptography

Reversing Thee Message

.thgin yb sklaw tunaep ehT

The cipher is called Reversing Thee Message and it works by writing the message backwards. Decrypted, the message would read:

The peanut walks by night.

http://www.bbc.co.uk/dna/h2g2/alabaster/A233966

Caesar Code / ROT-14

Cryptography

- Cryptography is structured into different layers
 - layering is a well-established principle for separation of concerns
- Cryptographic primitives implement very basic functionality
 - changes and advancements in this area are limited to very specialized researchers
 - it is easy to make fatal mistakes which then challenge everything built on top if it
- Cryptographic protocols assemble primitives into applicationlevel solutions
 - primitives solve very basic security problems (fingerprints, encryption, ...)
 - protocols combine these into applications (digital signatures, secure communications, ...)

Hash Function

 A hash function is any welldefined procedure or mathematical function that converts a large amount of data into a small datum, usually a single integer that may serve as an index to an array. The values returned by a hash function are called hash values, hash codes, hash sums, or simply hashes.

A hash function that maps names to integers from 0 to 15. There is a collision between keys "John Smith" and "Sandra Dee".

Cryptographic Hash Function

	cryptographic		2454		7000	2513
Fox	hash function	696C	3454 24D9	7009	788A CA99	2D17
T 1						
The red fox	cryptographic	0086	46BB	FB7D	CBE2	823C
the blue doa	function	ACC7	6CD1	90B1	EE6E	3ABC
J						
The red fox	cryptographic	8509	7559	7851	4122	D1C6
jumps o u er the blue dog	hash function	76B1	79A9	0DA4	AEFE	4819
The red fox	cryptographic	FCD3	7FDB	5AF2	C6FF	915F
jumps o ev r the blue dog	hash function	D401	COA9	7D9A	46AF	FB45
The red fox	cryptographic	8ACA	D682	D588	4075	4BF4
jumps oe r the blue dog	hash function	1799	7D88	BCF8	92B9	6A6C

Cryptographic Hash Function

- The ideal cryptographic hash function has four main or significant properties:
 - it is easy to compute the hash value for any given message,
 - it is infeasible to find a message that has a given hash,
 - it is infeasible to modify a message without changing its hash,
 - it is infeasible to find two different messages with the same hash.

One-Way Function

- Hashes (or message digests) are well-known in computer science
- One-way functions are cryptographically safe hashes
 - very hard to find an input producing a given output
 - very hard to find two inputs producing the same output ("collision")

Plausible Encryption

- Secret-Key is was most people think of when thinking of encryption
 - symmetric cryptography is another popular term
 - One key for encryption and decryption
 - Revealing the key makes encrypted data openly readable
 - there must be a secure channel to transport keys, such as diplomatic pouches [http://en.wikipedia.org/wiki/Diplomatic_bag].
- Good for long-term relationships with few partners
 - exchange secret keys as part of the initial setup of a relationships
 - adding partners requires a secure channel for key exchange
 - changing keys requires a secure channel for key exchange
- Almost impractical in an environment with many ad-hoc partners

Notice the Arrow

! Known-plain-text !

- Known-plain-text attack
 - Key is unknown, but when given plain-text the cryptosystem produces encrypted text
 - Careful choice of the plain-text allows the retrieval of the key
- Defences
 - Longer keys and padding with random data
 - Use a different key for each encryption

! Key-exchange !

- Key-exchange
 - The secret key must be transferred from Alice to Bob
- Solutions
 - Out-of-band transfer Disk, CD, hand-written Note,...
 - Key-exchange algorithms

Implausible Encryption

- Public-Key intuitively is hard to accept as a concept
 - asymmetric cryptography is another popular term
- Key pairs of one public and one secret key
 - key generation is the process of generating these key pairs
- The public key can be made available to the public
 only the secret key can do the inverse operation of the public key
- Good for short-term relationships with many partners
 - publish your public key so that it can be used worldwide
 - everybody can encrypt data using the public key
 - only the owner of the secret can can decrypt the message and read it
- Computationally expensive and not good for a large amounts of data

No arrow here ...

A's Public Key

- Use different keys for encryption and decryption
 - Alice publishes her public-key and keeps her private-key secret
 - Bob uses Alice's public-key to encrypt the plain-text
 - The plain-text cannot be decrypted using the public-key
 - Alice uses her private-key to decrypt the cypher-text

http://en.wikipedia.org/wiki/RSA

Public Key

- Alice generates a large random number
- This number is split into a public and a private component using a "trapdoor" function
 - Allows for easy splitting of the random number
 - Makes it hard to guess the private component from the public component

Building Secure Applications

- Cryptographic primitives in most cases are not sufficient
 - they provide basic functionality for fundamental tasks
 - they must by combined to provide solutions for real-world problems
- Typical problem #1: How to ensure key authenticity
 - with insecure keys, the majority of cryptographic methods is worthless
- Typical problem #2: How to communicate securely without shared keys
 - many interesting scenarios are based on ad-hoc interactions
 - secret-key does not work, public-key needs to verify the peer
- Typical problem #3: How to check authenticity and integrity of data
 - integrity can be done with checksums, but these could be forged
 - authenticity needs a cryptographically secure way of combining identity and data

Digital Signature

- also digital signature scheme
- is a mathematical scheme for demonstrating the authenticity of a digital message or document.
- A valid digital signature gives a recipient reason to believe that the message was created by a known sender, and that it was not altered in transit.
- Digital signatures are commonly used for software distribution, financial transactions, and in other cases where it is important to detect forgery and tampering.

Certificate

- Certificates are digital signatures issued by a trusted party
 - most digital signatures are created with certified public keys
 - this means the digital signature is created based on a digitally signed key
- Who can you trust on the Web?
 - trust can only start to grow based on initial trust in something
 - many systems come with pre-installed trust (root certificates)
 - certificates from other issuers will cause browsers to complain [https://katapultmedia.com/]
- Certificates (like domain names) are a very easy way to make money
 - in theory there are different levels of certificates with different levels of identity checking
 - in practice most sites choose the cheapest one that does not give an error message

Secure Communications

- Public-Key cryptography is computationally expensive
 - it is possible to encrypt all traffic using asymmetric key pairs
 - this generates considerably more load on the server side
- Combining public-key and secret-key cryptography

1. check the public key for authenticity (using a Certificate)

- 2. generate a key for a secret-key encryption scheme
- 3. use the public key to securely transmit the secret key
- 4. use the secret key for securely transmitting the payload
- Combines the advantages of both methods
 - the lower complexity of secret-key algorithms
 - the ability of public-key algorithms to work without a secure channel

HTTP and Security

- HTTP sends clear-text messages
- Making HTTP secure requires additional mechanisms
- Encryption is done by a layer on top of TCP
 - Secure Sockets Layer (SSL) is the protocol layer invented by Netscape
 - Transport Layer Security (TLS) is the standardized Internet version
 - TLS adds more encryption schemes and more flexibility
- Lower-level methods may also provide encryption
 - Virtual Private Networks (VPN) provide IP-based encryption
 - WEP and WPA provide network interface encryption

HTTP and SSL

SSL – Secure Socket Layer

- SSL is a cryptographic protocol or encryption protocol used to for secure application-level data transport.
- SSL implements algorithms for secure communication on the internet.

TSL – Transport Layer Security

- TSL stands for Transport Layer Security
- A browser requesting a secure page adds an "s" to the "http" when sending out the public key and certificate.
- TSL carries out three checks
 - Certificate comes from trusted party
 - Certificate is currently valid
 - Certificate has a relationship with the site from which it's coming

Transport Layer Security

- First version introduced 1995 by Netscape as SSL 2.0
 - SSL 2.0 suffers from serious cryptographic defects
- SSL 3.0
 - Fixed the major defects of SSL 2.0
- TLS 1.0
 - Can be used to secure any TCP based connection
 - IETF standard

Transport Layer Security

Client Hello Server Hello Server Certificate Key Exchange Start Secure Connection Finish Secure Connection

ATTACKS !

Dictionary Attack

- Brute-Force Attack with a dictionary or list of known words to "guess" a password.
 - Qwerk, 123456, admin, admin123
- Every request takes a couple of ms to s → a few hundred requests per minute possible
- Store IP address of the attacker / user if too many requests per minute are detected block the account
 - Banking Passwords often allow no more than three attempts then account is blocked and direct personal interaction with the provider required for additional security checks.

! Null Certificates !

- Certificates where the Common-Name includes a null character (\0)
 - www.lloyds.co.uk\0www.evilsite.com
- Certificate provider checks that the attacker controls evilsite.com
- Browser only displays the Common-Name up to the null character
 - www.lloyds.co.uk

Man in the Middle Attack (MITM)

- A MITM is achieved by an attacker who intercepts communication between victims making them believe that they are talking directly to each other over a private connection.
- Communication is controlled by the attacker without the victims knowing.
- The attacker has the capability to intercept all messages going between victims and inject new ones.

Means to prevent MITM

- Public key infrastructures
- Mutual authentication, via Secret keys
- Mutual authentication via Passwords
- Latency examination / using long Cryptographic hash function calculations
 - E.g. if hash function takes 10s and both parties take 20 seconds normally but the actual examined calculation takes 60 seconds to reach each party, this can indicate a third party
- Second (secure) channel verification
- One time pads
 - encryption, which has been proven to be impossible to crack (http://en.wikipedia.org/wiki/One-time_pad#Example)

Summary - Internet Security

- Security is hard there is NO 100 % Security
- Certificates are used to guarantee a party's authenticity
- Certificates are digital signatures issued by trusted parties
- Once authenticated, public keys can be used to securely communicate
- Encryption on the Web is based on SSL and TSL -HTTPS

- http://en.wikipedia.org/wiki/Internet_security
- http://dret.net/lectures/web-spring10/security