
19 - Optimizing and Testing Code 1

CM0133 Internet Computing

Optimizing and Testing Code

19 - Optimizing and Testing Code 2

Why do we want to optimize code ?
• Make code execute faster.

• Make code use less memory.

• Make code readable, reusable and maintainable for
others.

• Make web pages visible.

• Make web pages user friendly.

• Secure web pages.

19 - Optimizing and Testing Code 3

Tools
• Code Optimizations

• Profiling

• Web Traffic Analysis Tools

• Guidelines for commenting code

• Web Accessibility

• Testing, testing, testing ...

19 - Optimizing and Testing Code 4

Optimization
• Software optimization doesn’t begin where coding ends

– It is ongoing process that starts at design stage and
continues all the way through development.

• But “premature optimization is the root of all evil” -
Donald Knuth
– Early optimizations do not necessarily result in a better overall

system performance
– Optimizations can cause badly readable and/or badly

maintainable code.

19 - Optimizing and Testing Code 5

Javascript – Just in Time Compilation
• Javascript was initially a purley interpreted language.

• Nowadays Javascript Engines use a Just in Time (JIT)
Compiler
– Firefox v 3.5 uses Greasemonkey.

– Google's Chrome 2 browser has an JIT engine called V8.

– Apple's Safari has Nitro as a JIT compiler.

• JIT compilers translate a script into an efficient executable
call whenever the script is called for the first time, but not
before that, i.e. just in time.

• Some javascript code forces the Script Engine to switch
back into the interpreting mode, e.g. eval().

19 - Optimizing and Testing Code 6

Javascript
• Define scripts externally and refer to the character

encoding:

<script src=”my_script.js” charset=”utf-8”
type=”text/javascript”>

• Minify code e.g. with Firefox “Page Speed” deleting
unecessary spaces and line breaks. The resulting code
is 20 – 30 % shorter and increases the load time of the
script

• Shorten variable and function names
http://dean.edwards.name/packer/ - another 25 %

http://dean.edwards.name/packer/

19 - Optimizing and Testing Code 7

Minification vs Obfuscation
• Reduce the amount of source code to reduce download time.

• Minification deletes whitespace and comments.

• Obfuscation also changes the names of things.

• Obfuscation can introduce bugs.

• Never use tools that cause bugs if you can avoid it.

 http://www.crockford.com/javascript/jsmin.html

 EXAMPLE: http://www.stunnix.com/prod/jo/

http://www.crockford.com/javascript/jsmin.html
http://www.stunnix.com/prod/jo/

19 - Optimizing and Testing Code 8

Javascript – Avoid Depth First Search

function foo() {
localVar = document.getElementById('foo');

return localVar;

}

function foo() {
var localVar = document.getElementById('foo');

return localVar;

}

19 - Optimizing and Testing Code 9

Avoid unnecessary symbol table lookups

function doSomething() {
var a,b,c;

// …

a = “A”;

b = 2;

c = “zeh”

// …

}

function doSomething() {
var a = “A”;

var b = 2;

var c = “zeh”

// …

}

It is better to
declare AND
assign a value
because it does not require an
unnecessary lookup in the symbol table.

19 - Optimizing and Testing Code 10

PHP Profiling

http://www.webdesign.org/web-programming/php/benchmark-and-optimize-php-script-speed.14875.html

function getTime() {

 $timer = explode(' ', microtime());

 $timer = $timer[1] + $timer[0];

 return $timer;

}

• An important function of
code profilers are timing
functions:
– How much time does the

execution of a certain code
sequence take?

– How often is the code
sequence executed?

– How much does the code
sequence occupy the
overall runtime of the
script.

http://www.php.net/explode
http://www.php.net/microtime

19 - Optimizing and Testing Code 11

Profiling Tools
• Profiler may show time elapsed in each function and its

descendants
– number of calls , call-graph (some)

• Profilers use either instrumentation or sampling to
identify performance issues

• DEMO – Firebug Page Speed

19 - Optimizing and Testing Code 12

PHP - Profiling

$start = getTime();

 $aUsers = $wms->getUsers(0, $showType, true,
($_REQUEST['page']*$perPage), $perPage);

$end = getTime();

echo 'getUsers/getUsersByAbc: '.round($end - $start,4).'
seconds
';

http://www.webdesign.org/web-programming/php/benchmark-and-optimize-php-script-speed.14875.html#ixzz0ltiFeEs0

http://www.php.net/echo
http://www.php.net/round
http://www.webdesign.org/web-programming/php/benchmark-and-optimize-php-script-speed.14875.html#ixzz0ltiFeEs0

19 - Optimizing and Testing Code 13

Some PHP Best Practices
• Use static methods when possible, this is 4 times

faster

• Echo is faster as print

• Use , instead of . to concatenate a string

• Unset vars to clear memory (especially when using
arrays)

• Use full paths in includes and requires, so the
server doesn't have to resolve the paths for you

19 - Optimizing and Testing Code 14

Some PHP Best Practices
• Use strncasecmp, strpbrk and stripos in stead of regex

• It's better to use a select statement then multiple if statements
with multiple else statements

• Close database connections when you don't need them
anymore

• Incrementing a global var is 2 times slower as a local var

Read more:
http://www.webdesign.org/web-programming/php/benchmark-and-optimize-php-script-speed.14875.html#ixzz0ltj0JUnM

http://phplens.com/lens/php-book/optimizing-debugging-php.php

http://www.webdesign.org/web-programming/php/benchmark-and-optimize-php-script-speed.14875.html#ixzz0ltj0JUnM
http://phplens.com/lens/php-book/optimizing-debugging-php.php

19 - Optimizing and Testing Code 15

Mem Usage - Example

echo "Stage 1: Mem usage is: ", memory_get_usage(),"\n";

 $arr = array();

 for ($i = 0; $i < 1000000; ++$i) {

 $arr[] = rand();

 }

http://www.tuxradar.com/practicalphp/18/1/11

Stage 1: Mem usage is: 37712

http://www.tuxradar.com/practicalphp/18/1/11

19 - Optimizing and Testing Code 16

Mem Usage - Example

echo "Stage 2: Mem usage is: ", memory_get_usage(), "\n";

 $foo = 1;

 $bar = 2;

 echo "Stage 3: Mem usage is: ", memory_get_usage(), "\n";

http://www.tuxradar.com/practicalphp/18/1/11

Stage 2: Mem usage is: 60232136

Stage 3: Mem usage is: 60232248

http://www.tuxradar.com/practicalphp/18/1/11

19 - Optimizing and Testing Code 17

Explaination
• Before the script has done anything, PHP is already

using 37KB of RAM. This is where the parsed script and
other basic components live - there's nothing we can do
about that.

• In Stage 2, we have allocated 1,000,000 numbers into
the array $arr, using up 57.5MB of RAM (60232136 / 1024
(Bytes) / 1024 (KiloBytes) = 57.44 MB).

• By stage 3 we've also got the $foo and $bar variables
set to integers, so there's a nominal increase in memory
usage. So far, so good.

http://www.tuxradar.com/practicalphp/18/1/11

http://www.tuxradar.com/practicalphp/18/1/11

19 - Optimizing and Testing Code 18

Mem Usage - Example
$foo = $arr;

$bar = $arr;

echo "Stage 4: Mem usage is: ", memory_get_usage(), "\n";

$arr = array();

echo "Stage 5: Mem usage is: ", memory_get_usage(), "\n";

http://www.tuxradar.com/practicalphp/18/1/11

Stage 4: Mem usage is: 60232248

Stage 5: Mem usage is: 60232288

http://www.tuxradar.com/practicalphp/18/1/11

19 - Optimizing and Testing Code 19

Explaination II
• In stage 5 $arr is set to be an empty array, and yet the

memory usage barely moves. It goes up a little because
a new array structure is allocated empty for $arr, but it's
basically negligible.

19 - Optimizing and Testing Code 20

Mem Usage - Example

 $bar[] = "hello, world";

 echo "Stage 6: Mem usage is: ", memory_get_usage(), "\n";

 $foo = array();

 echo "Stage 7: Mem usage is: ", memory_get_usage(), "\n";

http://www.tuxradar.com/practicalphp/18/1/11

Stage 6: Mem usage is: 104426704

Stage 7: Mem usage is: 60242672

http://www.tuxradar.com/practicalphp/18/1/11

19 - Optimizing and Testing Code 21

Explanation III
• In stage 6 we've added an array element to the $bar array,

so PHP performs the copy-on-write operation - $bar takes
a full copy of the array it was previously pointing to, then
adds the new element. At this point, $foo and $bar are
point to two different arrays, and $arr is pointing to an
empty array.

• In stage 7, $foo is also set to be an empty array, and
suddenly there's a huge drop in the amount of memory
used as $foo's array gets cleaned up. Note, however, that
even though the $bar array is no longer referenced in the
rest of the script, it is not garbage collected: PHP holds it in
memory all the way until the script finishes.

19 - Optimizing and Testing Code 22

Lessons learned
• If you want a global scope variable to release its memory, use the

unset() function or set it to a different value. Otherwise, PHP will
keep it floating around just in case.

• Copy-on-write is your friend, and means that for all intents and
purposes arrays are copied by reference in the same way that
objects are. The only difference is that if you change the array
subsequently, a deep copy is performed.

• The minute you unset() or re-assign a variable, PHP frees its
memory. Freeing memory - particularly large amounts - isn't free in
terms of processor time, which means that if you want your script
to execute as fast as possible at the expense of RAM, you should
avoid garbage collection on large variables while it's running, then
let PHP do it en masse at the end of the script.

19 - Optimizing and Testing Code 23

Avoid Memory Leaks
function stopWatch() {

var t0 = new Date();

function elapsed(s) {

return ((new Date()).getTime() - t0.getTime()) / s ;

}

return elapsed;

}

var t = stopWatch();

This requires to learn about the
memory management of the
used programming language.

Javascript and PHP use a
garbage collector.

19 - Optimizing and Testing Code 24

Summary – Code Optimization
• Identify bottlenecks already in the design stage of your

software but be careful not to optimize to early in the
development process.

• Learn how to use your tools
– Compilation

– Memory Management

– Programming Language Specificities

• Consider the Time-Memory Tradeoff in the light of your
application.
– Memory use can be reduced at the cost of slower program

execution (or, vice versa, the computation time can be reduced at
the cost of increased memory use)

19 - Optimizing and Testing Code 25

Visibility
• Create useful high-quality material that is of interest to users.

• Design your website for the blind and deaf, not for spiders or
search bots.
– Search bots can't see visuals or hear sound files.

– Make your titles, anchor text, and ALT tags descriptive and relevant.

• Present information in more than one way.
– People have different needs and preferences.

• cheat sheets (quick reference or short summary)

• online tutorials

• problem sets and exercises

• Quizzes

• feature time line

• printable files

http://www.googleguide.com/contentTalk.html

19 - Optimizing and Testing Code 26

Visibility II
• Design names of pages to reflect what's on the page.

– Google considers the text in the URL when indexing the page.
page_6.html -> select_terms.html
page_12.html -> google_works.html
page_13.html -> results_page.html

• Include words on your web pages that users are likely to specify in a query when
searching for your content.

• Design your site logically.

• Include site maps.

• Link to each page that you want accessible from a search engine.
e.g.

links from one page to the next and previous pages
a table of contents
a navigation bar
topic links at the beginning of each part
summaries
links to relevant material both from your website and outside sources

http://www.googleguide.com/contentTalk.html

19 - Optimizing and Testing Code 27

Visibility III
• Strive to keep your pages short and about at most a few topics.

– A user is more likely to find what she seeks on a short page.

• Sparingly use dynamic content, e.g., JavaScript, Flash, DHTML,
etc.
– Search engine spiders are able to index plain text and html more

easily than flashy pages.
– Flashy pages are more likely to be left out of Google's index and

search results.

• Correct misspellings.
– Users are more likely to search for the correct spelling.

http://www.googleguide.com/contentTalk.html

19 - Optimizing and Testing Code 28

Visibility IV
• Seek feedback and use it to improve your site.

– Users and web logs are great sources for feedback.
– Respond to email quickly
– Acknowledge those who contribute ideas

• Learn from your logs.
– Try to figure out how and why users are coming to your site.
– If you suspect that users may seek information that isn't on your

site, consider adding it.

http://www.googleguide.com/contentTalk.html

19 - Optimizing and Testing Code 29

Visibility V
• Submit your site to various web directories and reference sites.

• Publicize your site to everyone with whom you communicate.

• Provide a Rich Site Summary (RSS) aka Really Simple Syndication
– Make it easy for other sites to distribute your headlines and content.

– Your RSS feed will be indexed by popular Blog search engines.

• Ask other high quality websites to link to your website.

• Keep your website up.

• Translate your website into foreign languages.

http://www.googleguide.com/contentTalk.html

19 - Optimizing and Testing Code 30

Web Traffic Analysis

http://www.mrunix.net/webalizer/

http://www.mrunix.net/webalizer/

19 - Optimizing and Testing Code 31

Web Traffic Analysis II
Google Analytics is an example for an online web analysis
tool:

You need to sign up for a Google account

1) Inject javascript code into the web pages you want to
monitor

2) Google monitors your pages and produces reports and
statistics for you based on hourly / daily snapshots.

3) DEMO

http://wordpress.tv/2009/05/29/getting-started-with-google-analytics/

19 - Optimizing and Testing Code 32

Comments

 Why do we write comments ?

19 - Optimizing and Testing Code 33

Comments
• Inappropriate Information

– Change histories, authorship of code, etc. should be kept in a
source code control system, rather than in the comments of your
code

• Obsolete Comment
– Old, irrelevant or incorrect comments are obsolete that should

be upgraded or deleted. Best not to write a comment that will
become obsolete.

• Redundant Comment
– i++; // increment i

19 - Optimizing and Testing Code 34

Comments II
• Poorly Written Comment

– A comment worth writing is worth writing well.
– Take time
– Choose words carefully
– Use correct grammar and punctuation
– Don't state the obvious
– Be brief

• Commented-Out Code
– DELETE IT and use a source code control system !

19 - Optimizing and Testing Code 35

Functions
• Too many arguments

– Functions should have a small number of arguments. More than three is
questionable already.

• Output Arguments
– Output arguments are counterintuitive. Readers expect arguments to be inputs,

not outputs. If your function must change the state of something, have it
change the state of the object it is called on.

• Flag Arguments
– Boolean arguments declare that the function does more than one thing. They

are confusing and should be eliminated

• Dead Function
– Methods that are never called should be discarded. Keeping dead code around

is wasteful. Use a source code control system – CVS, RCS,
http://unfuddle.com/

http://unfuddle.com/

19 - Optimizing and Testing Code 36

"The power of the Web is in its universality. Access by everyone regardless of
disability is an essential aspect."

-- Tim Berners-Lee, W3C Director and inventor of the World Wide Web

(Web Accessibility initiative, 2000)

Web Accessibility ?

19 - Optimizing and Testing Code 37

The following categories (which require attention for disabled users) have been identified:

Visual
Motor/
Mobility

Cognitive/
Intellectual Auditory

Web Accessibility - Definition

• Making web pages accessible to all potential users
– Those with AND without disabilities (usability)

– Using assistive technologies – not just standard web browsers

• Usability and accessibility are intertwined – good
accessibility is part of every good design for usability

19 - Optimizing and Testing Code 38

 “The Disability Discrimination Act makes it unlawful for a service provider to discriminate
against a disabled person by refusing to provide any service which it provides to members
of the public

 “From 1st October 1999 a service provider has to take reasonable steps to change a
practice which makes it unreasonably difficult for disabled people to make use of its
services.”

“What services are affected by the Disability Discrimination Act? An airline company
provides a flight reservation and booking service to the public on its website. This is a
provision of a service and is subject to the act.”

 “For people with visual impairments, the range of auxiliary aids or services which it
might be reasonable to provide to ensure that services are accessible might
include ... accessible websites.”

“For people with hearing disabilities, the range of auxiliary aids or services which it
might be reasonable to provide to ensure that services are accessible might
include ... accessible websites.

The Disability Discrimination Act (DDA)

19 - Optimizing and Testing Code 39

Implications of the DDA

You can be sued (as a company) for not catering for disabled users.
The Royal National Institute of Blind People (RNIB) is actively involved in checking
web sites

 In Australia the Sydney Olympics was sued by a blind man who was unable to
navigate their web site

Of 1000 websites, over 80% did not cater fully for disabled people (DRC -The

Disability Rights Commission - formal study)

To Comply, follow the W3C's guidelines!!!

19 - Optimizing and Testing Code 40

PAS 78
A guide to good practice in commissioning accessible websites

• PAS 78 is a Publicly Available Specification published on March 8,
2006 by the British Standards Institution (BSI) in collaboration with the
Disability Rights Commission (DRC).

• It provides guidance to organisations in how to go about commissioning
an accessible website from a design agency.

• It describes what is expected from websites to comply with the UK
Disability Discrimination Act (DDA), making websites accessible to and
usable by disabled people.

• The principal audience are businesses within the UK, but it is a relevant
document for charity and volunteer organisations, as well as local and
central government.

• Its also a useful document for web design agencies and web
developers as a guide to what is expected of them.

19 - Optimizing and Testing Code 41

Assistive Technologies

 The following assistive technologies are in common use:

Speech Recognition
Audible / Visual

Screen Magnification
Visual

Screen Reader
Visual

Keyboard Overlays
motor control

Translation Software

Assistive Technologies

19 - Optimizing and Testing Code 42

1. Provide equivalent alternatives to auditory and visual content.
2. Don't rely on color alone.
3. Use markup and style sheets and do so properly.
4. Clarify natural language usage
5. Create tables that transform gracefully.
6. Ensure that pages featuring new technologies transform gracefully.
7. Ensure user control of time-sensitive content changes.
8. Ensure direct accessibility of embedded user interfaces.
9. Design for device-independence.
10. Use interim solutions.
11. Use W3C technologies and guidelines.
12. Provide context and orientation information.
13. Provide clear navigation mechanisms.
14. Ensure that documents are clear and simple.

http://www.w3.org/TR/WAI-WEBCONTENT/

Web Content Accessibility Guidelines v1

19 - Optimizing and Testing Code 43

Principle 1: Content must be perceivable.
 1.1 Provide text alternatives for all non-text content
 1.2 Provide synchronized alternatives for multimedia
 1.3 Ensure that information and structure can be separated from
 presentation
 1.4 Make it easy to distinguish foreground information from its background

Principle 2: Interface components in the content must be operable
 2.1 Make all functionality operable via a keyboard interface
 2.2 Allow users to control time limits on their reading or interaction
 2.3 Allow users to avoid content that could cause seizures due to
 photosensitivity
 2.4 Provide mechanisms to help users find content, orient themselves within it,
 and navigate
 2.5 Help users avoid mistakes and make it easy to correct mistakes that do
 occur

http://www.w3.org/TR/WCAG20/guidelines.html#perceivable

Web Content Accessibility Guidelines v2

19 - Optimizing and Testing Code 44

Principle 3: Content and controls must be understandable
 3.1 Make text content readable and understandable.
 3.2 Make the placement and functionality of content
 predictable.

Principle 4: Content should be robust enough to work with current
and future user agents (including assistive technologies)
 4.1 Support compatibility with current and future user
 agents (including assistive technologies)
 4.2 Ensure that content is accessible or provide an
 accessible alternative

Web Content Accessibility Guidelines v2

19 - Optimizing and Testing Code 45Web Unit - A collection of information, consisting of one or more resources, intended to be rendered together, and identified by a
single Uniform Resource Identifier (such as URLs)

Different Levels Of Conformance

• Priority 1
– Mandatory requirements.

• Priority 2
– Should satisfy – remove significant barriers to accessing web

documents.

• Priority 3
– May satisfy – improve access.

19 - Optimizing and Testing Code 46

Various Validators to test Accessibility

• http://validator.w3.org/

• http://colorvisiontesting.com/what%20colorblind%20people%20see.htm

• http://www.labnol.org/internet/design/completely-test-website-errors-html-standards/2673/

http://colorfilter.wickline.org/

• http://www.softwareqatest.com/qatweb1.html#FREE

http://validator.w3.org/
http://colorvisiontesting.com/what%20colorblind%20people%20see.htm
http://www.labnol.org/internet/design/completely-test-website-errors-html-standards/2673/
http://colorfilter.wickline.org/
http://www.softwareqatest.com/qatweb1.html#FREE

19 - Optimizing and Testing Code 47

Literature
• http://progtuts.info/55/php-optimization-tips/

• Common tips for programming and commenting code

• http://www.devtopics.com/13-tips-to-comment-your-code/

• http://www.cprogramming.com/tutorial/comments.html

http://progtuts.info/55/php-optimization-tips/
http://www.devtopics.com/13-tips-to-comment-your-code/
http://www.cprogramming.com/tutorial/comments.html

	CMT602 Internet Computing HTML and Web Design
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Minification vs Obfuscation
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

