
13 - XMLThe eXtensible Markup Language 1

CM0133 Internet Computing

XML
The eXtensible Markup Language

13 - XMLThe eXtensible Markup Language 2

Outline
• XML and HTML

• XML applications

• XML documents and the XML data model

• XML applications

– Documents

– Type Declarations and Definitions

– Stylesheets

13 - XMLThe eXtensible Markup Language 3

XML and HTML
• HTML elements describe the structure of a document and

the style of presentation
– HTML elements do not indicate the meaning of the information

contained in the document

• XML allows authors to create their own tags (elements)
– tags can be used to describe the meaning of the information

contained within them (i.e. within the element)
– we can also define attributes for these tags

• XML documents represent the structure of the information
– by allowing a hierarchical ordering of the elements

• Scripts can make sophisticated use of XML tags
– for example, to display the information on a web browser

13 - XMLThe eXtensible Markup Language 4

XML and HTML

 Web Programming
 Chris Bates
 John Wiley and Sons
 2002
 0-470-84371-3

<book type="technical">
 <title>Web Programming</title>
 <author>Chris Bates</author>
 <publisher>John Wiley and Sons</publisher>
 <year>2002</year>
 <ISBN>0-470-84371-3</ISBN>
</book>

13 - XMLThe eXtensible Markup Language 5

XML
• NOTE: XML does not DO anything!

– Created to structure, store and send information
– HTML designed to DISPLAY data

• Why XML?
– On internet, XML describe data, HTML display data
– Can have multiple views of same data
– Exchange data between incompatible systems/different

platforms
– Just exchange information in plain text files
– B2B (Business to Business)

• Future applications all likely to exchange data in XML

13 - XMLThe eXtensible Markup Language 6

XML
• XML is a meta-language (a subset of SGML)

– used to create custom markup languages
– provides a basic format for structured documents

• XML allows authors to define their own elements
– used to describe the meaning of the information they contain
– we identify different types of information according to the

meaning of that information

• There is no standard set of XML tags, but many widely-
used markup languages have been created using XML
– CML (chemical markup language)

– MathML (mathematical markup language)

– MusicML (musical markup language)

13 - XMLThe eXtensible Markup Language 7

A simple XML Document

<?xml version="1.0"?>
<bibliography>
 <book type="technical" pages="601">
 <title>Web programming</title>
 <author>
 <firstname>Chris</firstname>
 <lastname>Bates</lastname>
 </author>
 <publisher>John Wiley and Sons</publisher>
 <year>2002</year>
 <ISBN>0-470-84371-3</ISBN>
 </book>
</bibliography>

13 - XMLThe eXtensible Markup Language 8

A simple XML Document
• The file is called

bibliography.xml

• The first line is a processing
instruction which specifies the
XML version used

• The bibliography element
is composed of one or more
book elements

• The book element is has child elements title, author,
publisher, year and ISBN

• The author element has child elements firstname and lastname

• The book element has attributes type and pages

13 - XMLThe eXtensible Markup Language 9

CML example
<?xml version="1.0"?>
 <cml xmlns="http://www.xml-cml.org/schema/cml2/core">
 <molecule id="myMolecule">
 <atomArray>
 <atom id="a1" elementType="C" hydrogenCount="0"/>
 <atom id="a2" elementType="C" hydrogenCount="0"/>
 <atom id="a3" elementType="C" hydrogenCount="2"/>
 </atomArray>
 <bondArray>
 <bond atomRefs="a1 a2" order="1"/>
 <bond atomRefs="a2 a3" order="1"/>
 <bond atomRefs="a1 a3" order="2"/>
 <stereo>W</stereo>
 </bond>
 </bondArray>
 </molecule>
 <cml>

13 - XMLThe eXtensible Markup Language 10

MathML example
<?xml version="1.0"?>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <mstyle fontsize="30pt">
 <mrow>
 <msup>
 <mi>x</mi>
 <mn>2</mn>
 </msup>
 <mo>+</mo>
 <mrow>
 <mn>4</mn>
 <mo>⁢</mo>
 <mi>x</mi>
 </mrow>
 </mrow>
 </mstyle>
</math>

13 - XMLThe eXtensible Markup Language 11

XML
• XML is case sensitive

• An XML document must be well-formed
– every opening tag must have a closing tag
– elements must not overlap
– all attribute values must be enclosed in quotation marks (single

or double)

• XML documents are often required to obey certain rules
regarding the structure of their elements
– these rules are specified in a document type declaration

– this leads to the concept of valid XML documents

13 - XMLThe eXtensible Markup Language 12

Well-formed XML documents
• The document must have one element (the root) within

which all other elements are nested

• All attribute values must be in quotation marks

• All elements must have opening and closing tags, unless
empty in which case <tagname/> must be used

• All tags must be properly nested
– opening and closing tags must be inside their parent

• Markup characters must not be used in document text
– <, >, &,]]>

• Entities must be declared in a DTD

13 - XMLThe eXtensible Markup Language 13

Exercise

Pair up and write a well
formed XML document

for describing cars

13 - XMLThe eXtensible Markup Language 14

Examples
 <!DOCTYPE node PUBLIC "-//freedesktop//DTD
D-BUS Object Introspection 1.0//EN"

"http://www.freedesktop.org/standards/dbus/1.0/i
ntrospect.dtd">

 <node name="/com/trollech/examples/car">

 <interface
name="com.trolltech.Examples.CarInterface">

 <method name="accelerate"/>

 <method name="decelerate"/>

 <method name="turnLeft"/>

 <method name="turnRight"/>

 <signal name="crashed"/>

 </interface>

 </node>

class XmlExamples {

 static def CAR_RECORDS = '''

 <records>

 <car name='HSV Maloo' make='Holden' year='2006'>

 <country>Australia</country>

 <record type='speed'>Production Pickup Truck with speed of
271kph</record>

 </car>

 <car name='P50' make='Peel' year='1962'>

 <country>Isle of Man</country>

 <record type='size'>Smallest Street-Legal Car at 99cm wide and 59
kg in weight</record>

 </car>

 <car name='Royale' make='Bugatti' year='1931'>

 <country>France</country>

 <record type='price'>Most Valuable Car at $15 million</record>

 </car>

 </records>

 '''

}

13 - XMLThe eXtensible Markup Language 15

Valid XML documents
• The document must be well formed

• The document’s root element must match the root
element specified in the associated DTD

• The document must have a DTD that declares all
elements, attributes and entities

• The document must follow the rules (grammar) specified
in the associated DTD

13 - XMLThe eXtensible Markup Language 16

XML Parsers
• HTML

– If errors in HTML then still works
– Leads to different browsers interpreting HTML slightly

differently
– Leads to incompatibility issues between browsers

• XML
– Decided this should not be the case. If error in XML,

then program should not continue
– XML parsers created to check well-formed XML

13 - XMLThe eXtensible Markup Language 17

XML Parsers
• XML parsers construct a tree representation of the data

– The majority of XML parsers are non-validating
– They only check that the document is well-formed

• Browser includes an XML parser

• Other XML parsers:
– SAX-based parsers

– DOM-based parsers

13 - XMLThe eXtensible Markup Language 18

XML applications
An XML application has three components

• An XML document
– contains data tagged with content-specific elements
– There is no standard set of XML tags.

• A document type definition (DTD)
– specifies element names and attributes, and rules for the

hierarchical structuring of elements.
– There are various specifications of tags, defined in DTDs that

may be public or private

• A stylesheet
– specifies formatting rules for the document
– either CSS (cascading stylesheet) or XLS (Extensible Stylesheet

Language)

13 - XMLThe eXtensible Markup Language 19

XML documents
• An XML document is described by a data model

• The data model is a tree consisting of
– Element nodes

– Control Nodes
• Document Nodes
• Processing instruction nodes
• Comment nodes

– Data nodes

13 - XMLThe eXtensible Markup Language 20

Element nodes

• Each element node has
– An element type: eltType (this is the tag name)

– A set of attribute-value pairs: {(ai,"Ai")}

– An ordered list of children: {cj}

• Note: each attribute ai must be unique

An element node is created by an expression like

<eltType a1="A1" ... an="An">c1 . . . cm</eltType>

or

<eltType a1="A1" ... an="An"/>

13 - XMLThe eXtensible Markup Language 21

Element nodes

Elements

• are used to tag the various components that comprise
the logical structure of a document

• are defined in a document type definition
– this is accessed using a document type declaration

• may contain other elements and may include attributes

• may be empty, as in <tagName/>

13 - XMLThe eXtensible Markup Language 22

Document nodes

• A document node has a type but no attributes. Instead, it
has an optional URL which specifies a data model for
this node and its children.

• Exactly one child of a document node must be an
element node (of the same type as the document type)

• The root node of the XML tree may be an anonymous
document node (without a type and without a URL)
– Such document nodes are represented by the absence of a <!
doctype> element

<!doctype eltType "URL">c1 . . . cm

A document node is a particular kind of element node

13 - XMLThe eXtensible Markup Language 23

Document type declarations

• Specifies the location of a document type definition
– In this case, the file “myBib.dtd”
– The child node of the DTD is the root element of the document
– The DTD could also be included in the XML document itself

• SYSTEM indicates that the file is on a local computer
– PUBLIC would indicate that the DTD is publicly available

• Specifies the root element of the document
– bibliography is the root element

<!DOCTYPE bibliography SYSTEM "myBib.dtd">

• A document type declaration is a single document node
which defines a data model for the entire document

13 - XMLThe eXtensible Markup Language 24

A processing instruction node is always a leaf node, and
only has a processing instruction associated with it

Processing instruction nodes

• A processing instruction is any sequence of characters,
the only restriction being that the sequence may not start
with the three characters xml (upper, lower or mixed
case) followed by a space or newline.

• Instructions starting with xml followed by a whitespace
character have special meaning.

<? a processing instruction ?>

<?xml a special processing instruction ?>

13 - XMLThe eXtensible Markup Language 25

1) The following line is mandatory (specifies xml version)

Processing instruction nodes
Processing instruction nodes contain information that can

be used by application programs
– processing instructions are ignored by XML parsers

<?xml version="1.0" ?>

<?xml-stylesheet href="mysty.xsl" type="text/xsl" ?>

<?xml version="1.0" standalone="no" ?>

2) The following declares that external files are required

3) The following includes a reference to an XSL stylesheet

13 - XMLThe eXtensible Markup Language 26

Comment nodes

• Comment nodes are used to include explanatory notes
for human consumption

• Processing instruction nodes are for consumption by an
application

• In the XML data model there is no difference between
processing instruction nodes and comment nodes

A comment node is similar to a processing instruction node
– it is always a leaf node and contains only a comment

<!-- a comment -->

13 - XMLThe eXtensible Markup Language 27

Data nodes

• Since all the other types of nodes have delimiters that
distinguish them, data nodes don't need delimiters
– Everything not contained between “<” and “>” is data

• Data nodes cannot be empty
– their data characteristic must contain at least one character

• A data node is always a leaf node and has only a single
characteristic – the data itself

<aTag>
 some data
</aTag>

13 - XMLThe eXtensible Markup Language 28

Example XML document
<?xml version="1.0"?>
<!DOCTYPE bibliography SYSTEM "myBib.dtd">
<!-- This is my bibliography -->
<bibliography>
 <book type="technical" pages="601">
 <title>Web programming</title>
 <author>
 <firstname>Chris</firstname>
 <lastname>Bates</lastname>
 </author>
 <publisher>John Wiley and Sons</publisher>
 <year>2002</year>
 <ISBN>0-470-84371-3</ISBN>
 </book>
</bibliography>

13 - XMLThe eXtensible Markup Language 29

Document Type Definitions (DTD)
• An XML document has neither meaning nor context

without a grammar against which it can be validated

• The grammar is called a Document Type Definition

• Writing a good DTD is probably the most difficult aspect
of writing an XML application

• The DTD has only a few components
– The way that these components are assembled leads to

complex structures (like the bibliography)

– A DTD is primarily used to verify XML documents. Good practice
in business etc.

13 - XMLThe eXtensible Markup Language 30

Example DTD
<!ELEMENT bibliography (book+) >
 <!ATTLIST bibliography
 title CDATA "Bibliography">
 <!ELEMENT book (title, author+, publisher, year, ISBN)>
 <!ATTLIST book
 type (technical | biography | fiction) #REQUIRED
 pages CDATA #IMPLIED >
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT author (firstname, initial*, lastname)>
 <!ELEMENT firstname (#PCDATA)>
 <!ELEMENT initial (#PCDATA)>
 <!ELEMENT lastname (#PCDATA)>
 <!ELEMENT publisher (#PCDATA)>
 <!ELEMENT year (#PCDATA)>
 <!ELEMENT ISBN (#PCDATA)>
<!ENTITY isbn "ISBN:">

13 - XMLThe eXtensible Markup Language 31

Example DTD
• The bibliography element is the root element of the

DTD, and contains one or more book elements
– book exactly one occurence
– book? zero or one occurence
– book+ one or more occurences
– book* zero or more occurence

• The book element contains 5 child elements: title,
author+, publisher, year and ISBN
– these must be included in the specified order

• (title|author+|publisher|year|ISBN)
– indicates that any ordering is acceptable

13 - XMLThe eXtensible Markup Language 32

Example DTD
• The book element has two attributes: type and pages

– PCDATA

• indicates that the data should be parsed (by the parser)

• data can only contain “legal” characters and defined entities
– CDATA

• indicates that the data should be ignored by the parser

• the data can contain any characters
– #REQUIRED means mandatory (must be present)
– #IMPLIED means optional

• type (technical|biography|fiction) #REQUIRED
– The value of the type attribute must be either technical,
biography or fiction

13 - XMLThe eXtensible Markup Language 33

Example DTD
• Internal entities

<!ENTITY isbn "ISBN:">
• This defines an internal entity called isbn
• Internal entities are used to create small pieces of data that are

to be used repeatedly throughout the document
• When an entity is included, its name is preceeded by an

ampersand (&) and followed by a semicolon(;).
• The entity reference &isbn; is replaced by the string “ISBN:”
• This is exactly the same way that HTML control characters are

included in docuements (e.g < for the < character)

• External entities
<!ENTITY myImage SYSTEM "myImage.png" NDATA PNG>
• This defines an external entity as a container for a PNG image

13 - XMLThe eXtensible Markup Language 34

Cascading stylesheets
• Recall: XML does not contain display information

– We invent tags. Therefore a browser doesn’t know if e.g. <table>

tag refers to HTML table or a dining table!

• Different solutions to view problem: CSS,XSL, Javascript

• Cascading stylesheets are a simple way to view XML
applications on the web

• Cascading stylesheets are limited in what they can
achieve – they have no support for tables or lists

• They are included using the following line:

<?xml-stylesheet type="text/css" href="myStyles.css"?>

13 - XMLThe eXtensible Markup Language 35

Example
<?xml version="1.0"?>
<!DOCTYPE bibliography SYSTEM "myBib.dtd">
<?xml-stylesheet type="text/css" href="myStyles.css"?>

<bibliography name="Bibliography for CMT602c">
 <book type="technical" pages="601">
 <title>Web programming</title>
 <author>
 <firstname>Chris</firstname>
 <lastname>Bates</lastname>
 </author>
 <publisher>John Wiley & Sons Ltd</publisher>
 <year>2002</year>
 <ISBN>0-470-84371-3</ISBN>
 </book>
 ...etc...
</bibliography>

13 - XMLThe eXtensible Markup Language 36

Cascading stylesheets

title {
 font-family:"times";
 font-size:16pt;
 color:blue;
 display:block;
 padding-top:15pt;
}
... etc ...

ISBN {
 family:"times";
 font-size:12pt;
 color:black;
 display:block;
}

Part of myStyles.css

13 - XMLThe eXtensible Markup Language 37

The Extensible Stylesheet Language
• A cascading stylesheet creates a style for specific XML

elements

• An XSL stylesheet creates a template – this is a design
for (part of) the page

• The template is used to format XML elements which
match a specified pattern

• XSL can be used to produce any type of markup
– HTML, LaTeX, PDF, Rich Text Format

• XSL stylesheets are included using the following line:

<?xml:stylesheet type="text/xsl" href="bibStyle.xsl"?>

13 - XMLThe eXtensible Markup Language 38

<html>
<body bgcolor="lightyellow">
 <h1><!-- put bibliography title here --></h1>
 <table border="1">

 <!-- for every book -->
 <tr>
 <td><!-- put title here --></td>
 <td><!-- put authors here --></td>
 <td><!-- put publisher here --></td>
 <td><!-- put year here --></td>
 <td><!-- put ISBN here --></td>
 </tr>
 </table>
 </body>
</html>

Example

• First write a framework for the
desired output (using comments)

13 - XMLThe eXtensible Markup Language 39

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 <html>
 <body bgcolor="lightyellow">
 <h1><xsl:value-of select="bibliography/@name"/></h1>
 <table border="1">
 <xsl:for-each select="bibliography/book">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <td>
 <xsl:for-each select="author">
 <xsl:value-of select="firstname"/>
 <xsl:value-of select="lastname"/>

 </xsl:for-each>
 </td>
 <td><xsl:value-of select="publisher"/></td>
 <td><xsl:value-of select="year"/></td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Example

13 - XMLThe eXtensible Markup Language 40

XSL
• The following line declares that the file is a stylesheet

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match="/">

• The following line declares an XSL template

• A stylesheet can contain multiple templates for use in different
situations. This example defines a single template (which is
applied to the whole document) using the pattern matching
command match

• Any element matching the pattern will be subject to the
transformations it includes

13 - XMLThe eXtensible Markup Language 41

XSL

<xsl:for-each select="bibliography/book">

• The XML document is represented as a hierarchy of
patterns (each separated by a forward slash)

• The following line iterates over all books

• The following line extracts the value of the book title

<xsl:value-of select="title"/>

• The tag is substituted in the output by the value

• The following line extracts the name attribute of the
bibliography

<xsl:value-of select="bibliography/@name"/>

13 - XMLThe eXtensible Markup Language 42

Example
• Using the attributes of the HTML elements (including style

attributes) we can produce more complex presentations

13 - XMLThe eXtensible Markup Language 43

Summary
• XML and HTML

• XML applications

• XML documents and the XML data model

• XML applications
– Documents
– Type Declarations and Definitions
– Stylesheets

http://www.w3schools.com/xml/default.asp

	CM0133 Internet Computing XML
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	CML example
	MathML example
	Slide 11
	Well-formed XML documents
	Slide 13
	Slide 14
	Valid XML documents
	Slide 16
	XML Parsers
	Slide 18
	XML documents
	Element nodes
	Slide 21
	Document nodes
	Document type declarations
	Processing instruction nodes
	Slide 25
	Comment nodes
	Data nodes
	Example XML document
	Document Type Definitions (DTD)
	Example DTD
	Slide 31
	Slide 32
	Slide 33
	Cascading stylesheets
	Example
	Slide 36
	The Extensible Stylesheet Language
	Slide 38
	Slide 39
	XSL
	Slide 41
	Slide 42
	Slide 43

