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XML
The eXtensible Markup Language
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Outline
• XML and HTML

• XML applications

• XML documents and the XML data model

• XML applications

– Documents

– Type Declarations and Definitions

– Stylesheets
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XML and HTML
• HTML elements describe the structure of a document and 

the style of presentation
– HTML elements do not indicate the meaning of the information 

contained in the document

• XML allows authors to create their own tags (elements)
– tags can be used to describe the meaning of the information 

contained within them (i.e. within the element)
– we can also define attributes for these tags

• XML documents represent the structure of the information
– by allowing a hierarchical ordering of the elements

• Scripts can make sophisticated use of XML tags
– for example, to display the information on a web browser
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XML and HTML
<ul>
    <li>Web Programming</li>
    <li>Chris Bates</li>
    <li>John Wiley and Sons</li>
    <li>2002</li>
    <li>0-470-84371-3</li>
</ul>

<book type="technical">
    <title>Web Programming</title>
    <author>Chris Bates</author>
    <publisher>John Wiley and Sons</publisher>
    <year>2002</year>
    <ISBN>0-470-84371-3</ISBN>
</book>
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XML
• NOTE: XML does not DO anything!

– Created to structure, store and send information
– HTML designed to DISPLAY data

• Why XML?
– On internet, XML describe data, HTML display data
– Can have multiple views of same data
– Exchange data between incompatible systems/different 

platforms
– Just exchange information in plain text files
– B2B (Business to Business)

• Future applications all likely to exchange data in XML
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XML
• XML is a meta-language (a subset of SGML)

– used to create custom markup languages
– provides a basic format for structured documents

• XML allows authors to define their own elements 
– used to describe the meaning of the information they contain
– we identify different types of information according to the 

meaning of that information

• There is no standard set of XML tags, but many widely-
used markup languages have been created using XML
– CML (chemical markup language)

– MathML (mathematical markup language)

– MusicML (musical markup language)
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A simple XML Document

<?xml version="1.0"?>
<bibliography>
  <book type="technical" pages="601">
    <title>Web programming</title>
    <author> 
      <firstname>Chris</firstname>
  <lastname>Bates</lastname> 
    </author>
    <publisher>John Wiley and Sons</publisher>
    <year>2002</year>
    <ISBN>0-470-84371-3</ISBN>
  </book>
</bibliography>
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A simple XML Document
• The file is called 

bibliography.xml 

• The first line is a processing 
instruction which specifies the 
XML version used

• The bibliography element 
is composed of one or more 
book elements

• The book element is has child elements title, author, 
publisher, year and ISBN

• The author element has child elements firstname and lastname

• The book element has attributes type and pages



13 - XMLThe eXtensible Markup Language 9

CML example
<?xml version="1.0"?>
 <cml xmlns="http://www.xml-cml.org/schema/cml2/core">
  <molecule id="myMolecule">
   <atomArray>
     <atom id="a1" elementType="C" hydrogenCount="0"/>
     <atom id="a2" elementType="C" hydrogenCount="0"/>
     <atom id="a3" elementType="C" hydrogenCount="2"/>
   </atomArray>
   <bondArray>
     <bond atomRefs="a1 a2" order="1"/>
     <bond atomRefs="a2 a3" order="1"/>
     <bond atomRefs="a1 a3" order="2"/>
       <stereo>W</stereo>
     </bond>
   </bondArray>
  </molecule>
 <cml>
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MathML example
<?xml version="1.0"?>
<math xmlns="http://www.w3.org/1998/Math/MathML">
  <mstyle fontsize="30pt"> 
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
      <mo>+</mo>
      <mrow>
        <mn>4</mn>
        <mo>&InvisibleTimes;</mo>
        <mi>x</mi>
      </mrow>
    </mrow>
  </mstyle>
</math>
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XML
• XML is case sensitive

• An XML document must be well-formed
– every opening tag must have a closing tag
– elements must not overlap
– all attribute values must be enclosed in quotation marks (single 

or double)

• XML documents are often required to obey certain rules 
regarding the structure of their elements
– these rules are specified in a document type declaration

– this leads to the concept of valid XML documents
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Well-formed XML documents
• The document must have one element (the root) within 

which all other elements are nested

• All attribute values must be in quotation marks

• All elements must have opening and closing tags, unless 
empty in which case <tagname/> must be used

• All tags must be properly nested 
– opening and closing tags must be inside their parent 

• Markup characters must not be used in document text
– <, >, &, ]]>

• Entities must be declared in a DTD
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Exercise

Pair up and write a well 
formed XML document 

for describing cars
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Examples
 <!DOCTYPE node PUBLIC "-//freedesktop//DTD 
D-BUS Object Introspection 1.0//EN"

         
"http://www.freedesktop.org/standards/dbus/1.0/i
ntrospect.dtd">

 <node name="/com/trollech/examples/car">

         <interface 
name="com.trolltech.Examples.CarInterface">

                 <method name="accelerate"/>

                 <method name="decelerate"/>

                 <method name="turnLeft"/>

                 <method name="turnRight"/>

                 <signal name="crashed"/>

         </interface>

 </node>

class XmlExamples {

  static def CAR_RECORDS = '''

    <records>

      <car name='HSV Maloo' make='Holden' year='2006'>

        <country>Australia</country>

        <record type='speed'>Production Pickup Truck with speed of 
271kph</record>

      </car>

      <car name='P50' make='Peel' year='1962'>

        <country>Isle of Man</country>

        <record type='size'>Smallest Street-Legal Car at 99cm wide and 59 
kg in weight</record>

      </car>

      <car name='Royale' make='Bugatti' year='1931'>

        <country>France</country>

        <record type='price'>Most Valuable Car at $15 million</record>

      </car>

    </records>

  '''

}
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Valid XML documents
• The document must be well formed

• The document’s root element must match the root 
element specified in the associated DTD

• The document must have a DTD that declares all 
elements, attributes and entities

• The document must follow the rules (grammar) specified 
in the associated DTD
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XML Parsers
• HTML

– If errors in HTML then still works
– Leads to different browsers interpreting HTML slightly 

differently
– Leads to incompatibility issues between browsers

• XML
– Decided this should not be the case. If error in XML, 

then program should not continue
– XML parsers created to check well-formed XML
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XML Parsers
• XML parsers construct a tree representation of the data

– The majority of XML parsers are non-validating
– They only check that the document is well-formed

• Browser includes an XML parser

• Other XML parsers:
– SAX-based parsers

– DOM-based parsers



13 - XMLThe eXtensible Markup Language 18

XML applications
An XML application has three components

• An XML document
– contains data tagged with content-specific elements
– There is no standard set of XML tags.

• A document type definition (DTD)
– specifies element names and attributes, and rules for the 

hierarchical structuring of elements. 
– There are various specifications of tags, defined in DTDs that 

may be public or private

• A stylesheet
– specifies formatting rules for the document
– either CSS (cascading stylesheet) or XLS (Extensible Stylesheet 

Language)
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XML documents
• An XML document is described by a data model

• The data model is a tree consisting of 
– Element nodes

– Control Nodes
• Document Nodes
• Processing instruction nodes
• Comment nodes

– Data nodes
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Element nodes

• Each element node has 
– An element type: eltType (this is the tag name)

– A set of attribute-value pairs: {(ai,"Ai")}

– An ordered list of children: {cj} 

• Note: each attribute ai must be unique

An element node is created by an expression like

<eltType a1="A1" ... an="An">c1 . . . cm</eltType>

or

<eltType a1="A1" ... an="An"/>
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Element nodes

Elements

• are used to tag the various components that comprise 
the logical structure of a document

• are defined in a document type definition
– this is accessed using a document type declaration

• may contain other elements and may include attributes

• may be empty, as in <tagName/> 
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Document nodes

• A document node has a type but no attributes. Instead, it 
has an optional URL which specifies a data model for 
this node and its children.

• Exactly one child of a document node must be an 
element node (of the same type as the document type)

• The root node of the XML tree may be an anonymous 
document node (without a type and without a URL)
– Such document nodes are represented by the absence of a <!
doctype> element 

<!doctype eltType "URL">c1 . . . cm

A document  node is a particular kind of element node
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Document type declarations

• Specifies the location of a document type definition 
– In this case, the file “myBib.dtd”
– The child node of the DTD is the root element of the document
– The DTD could also be included in the XML document itself

• SYSTEM indicates that the file is on a local computer
– PUBLIC would indicate that the DTD is publicly available

• Specifies the root element of the document
– bibliography is the root element

<!DOCTYPE bibliography SYSTEM "myBib.dtd">

• A document type declaration is a single document node 
which defines a data model for the entire document
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A processing instruction node is always a leaf node, and 
only has a processing instruction associated with it 

Processing instruction nodes

• A processing instruction is any sequence of characters, 
the only restriction being that the sequence may not start 
with the three characters xml (upper, lower or mixed 
case) followed by a space or newline.

• Instructions starting with xml followed by a whitespace 
character have special meaning. 

<? a processing instruction ?>

<?xml a special processing instruction ?>
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1)  The following line is mandatory (specifies xml version)

Processing instruction nodes
Processing instruction nodes contain information that can 

be used by application programs 
– processing instructions are ignored by XML parsers

<?xml version="1.0" ?>

<?xml-stylesheet href="mysty.xsl" type="text/xsl" ?>

<?xml version="1.0" standalone="no" ?>

2)  The following declares that external files are required

3)  The following includes a reference to an XSL stylesheet
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Comment nodes

• Comment nodes are used to include explanatory notes 
for human consumption

• Processing instruction nodes are for consumption by an 
application

• In the XML data model there is no difference between 
processing instruction nodes and comment nodes

A comment node is similar to a processing instruction node 
– it is always a leaf node and contains only a comment

<!-- a comment -->
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Data nodes

• Since all the other types of nodes have delimiters that 
distinguish them, data nodes don't need delimiters
– Everything not contained between “<” and “>” is data

• Data nodes cannot be empty
– their data characteristic must contain at least one character

• A data node is always a leaf node and has only a single 
characteristic – the data itself

<aTag>
   some data
</aTag>
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Example XML document
<?xml version="1.0"?>
<!DOCTYPE bibliography SYSTEM "myBib.dtd"> 
<!-- This is my bibliography -->
<bibliography>
  <book type="technical" pages="601">
    <title>Web programming</title>
    <author> 
      <firstname>Chris</firstname>
  <lastname>Bates</lastname> 
    </author>
    <publisher>John Wiley and Sons</publisher>
    <year>2002</year>
    <ISBN>0-470-84371-3</ISBN>
  </book>
</bibliography>
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Document Type Definitions (DTD)
• An XML document has neither meaning nor context 

without a grammar against which it can be validated

• The grammar is called a Document Type Definition

• Writing a good DTD is probably the most difficult aspect 
of writing an XML application

• The DTD has only a few components
– The way that these components are assembled leads to 

complex structures (like the bibliography)

– A DTD is primarily used to verify XML documents. Good practice 
in business etc.
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Example DTD
<!ELEMENT bibliography (book+) >
  <!ATTLIST bibliography 
    title CDATA "Bibliography">
  <!ELEMENT book (title, author+, publisher, year, ISBN)>
    <!ATTLIST book
      type (technical | biography | fiction) #REQUIRED
      pages CDATA #IMPLIED >
    <!ELEMENT title (#PCDATA)>
    <!ELEMENT author (firstname, initial*, lastname)>
      <!ELEMENT firstname (#PCDATA)>
      <!ELEMENT initial (#PCDATA)>
      <!ELEMENT lastname (#PCDATA)>
    <!ELEMENT publisher (#PCDATA)>
    <!ELEMENT year (#PCDATA)>
    <!ELEMENT ISBN (#PCDATA)>
<!ENTITY isbn "ISBN:">                                    
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Example DTD
• The bibliography element is the root element of the 

DTD, and contains one or more book elements
– book exactly one occurence
– book? zero or one occurence
– book+ one or more occurences
– book* zero or more occurence

• The book element contains 5 child elements: title, 
author+, publisher, year and ISBN 
– these must be included in the specified order

• (title|author+|publisher|year|ISBN) 
– indicates that any ordering is acceptable
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Example DTD
• The book element has two attributes: type and pages

– PCDATA 

• indicates that  the data should be parsed (by the parser)

• data can only contain “legal” characters and defined entities
– CDATA 

• indicates that the data should be ignored by the parser

• the data can contain any characters
– #REQUIRED means mandatory (must be present)
– #IMPLIED means optional

• type (technical|biography|fiction) #REQUIRED
– The value of the type attribute must be either technical, 
biography or fiction
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Example DTD
• Internal entities 

<!ENTITY isbn "ISBN:">
• This defines an internal entity called isbn
• Internal entities are used to create small pieces of data that are 

to be used repeatedly throughout the document
• When an entity is included, its name is preceeded by an 

ampersand (&) and followed by a semicolon(;). 
• The entity reference &isbn; is replaced by the string “ISBN:”
• This is exactly the same way that HTML control characters are 

included in docuements (e.g &lt; for the < character)

• External entities 
<!ENTITY myImage SYSTEM "myImage.png" NDATA PNG>
• This defines an external entity as a container for a PNG image



13 - XMLThe eXtensible Markup Language 34

Cascading stylesheets
• Recall: XML does not contain display information

– We invent tags. Therefore a browser doesn’t know if e.g. <table>

tag refers to HTML table or a dining table!

• Different solutions to view problem: CSS,XSL, Javascript

• Cascading stylesheets are a simple way to view XML 
applications on the web

• Cascading stylesheets are limited in what they can 
achieve – they have no support for tables or lists

• They are included using the following line:

<?xml-stylesheet type="text/css" href="myStyles.css"?>
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Example
<?xml version="1.0"?>
<!DOCTYPE bibliography SYSTEM "myBib.dtd">
<?xml-stylesheet type="text/css" href="myStyles.css"?>

<bibliography name="Bibliography for CMT602c">
  <book type="technical" pages="601">
    <title>Web programming</title>
    <author> 
      <firstname>Chris</firstname>
      <lastname>Bates</lastname> 
    </author>
    <publisher>John Wiley &amp; Sons Ltd</publisher>
    <year>2002</year>
    <ISBN>0-470-84371-3</ISBN>
  </book>
  ...etc...
</bibliography> 
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Cascading stylesheets

title {
 font-family:"times";
 font-size:16pt;
 color:blue;
 display:block;
 padding-top:15pt;
}
... etc ...

ISBN {
 family:"times";
 font-size:12pt;
 color:black;
 display:block;
}

Part of myStyles.css
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The Extensible Stylesheet Language
• A cascading stylesheet creates a style for specific XML 

elements

• An XSL stylesheet creates a template – this is a design 
for (part of) the page

• The template is used to format XML elements which 
match a specified pattern

• XSL can be used to produce any type of markup
– HTML, LaTeX, PDF, Rich Text Format

• XSL stylesheets are included using the following line:

<?xml:stylesheet type="text/xsl" href="bibStyle.xsl"?>
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<html>
<body bgcolor="lightyellow">
  <h1><!-- put bibliography title here --></h1>
  <table border="1">
 
   <!-- for every book -->
   <tr>
     <td><!-- put title here --></td>
     <td><!-- put authors here --></td>
     <td><!-- put publisher here --></td>
     <td><!-- put year here --></td>
     <td><!-- put ISBN here --></td>
   </tr>
  </table>
 </body>
</html>

Example

• First write a framework for the 
desired output (using comments)
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<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
  <html>
   <body bgcolor="lightyellow">
    <h1><xsl:value-of select="bibliography/@name"/></h1>
     <table border="1">
      <xsl:for-each select="bibliography/book">
       <tr>
        <td><xsl:value-of select="title"/></td>
        <td>
          <xsl:for-each select="author">
            <xsl:value-of select="firstname"/>
            <xsl:value-of select="lastname"/><br/>

    </xsl:for-each>
        </td>
        <td><xsl:value-of select="publisher"/></td>
        <td><xsl:value-of select="year"/></td>
       </tr>
      </xsl:for-each>
     </table>
   </body>
  </html>
 </xsl:template>
</xsl:stylesheet> 

Example
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XSL
• The following line declares that the file is a stylesheet

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match="/">

• The following line declares an XSL template

• A stylesheet can contain multiple templates for use in different 
situations. This example defines a single template (which is 
applied to the whole document) using the pattern matching 
command match

• Any element matching the pattern will be subject to the 
transformations it includes
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XSL

<xsl:for-each select="bibliography/book">

• The XML document is represented as a hierarchy of 
patterns (each separated by a forward slash)

• The following line iterates over all books

• The following line extracts the value of the book title

<xsl:value-of select="title"/>

• The tag is substituted in the output by the value

• The following line extracts the name attribute of the 
bibliography

<xsl:value-of select="bibliography/@name"/>
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Example
• Using the attributes of the HTML elements (including style 

attributes) we can produce more complex presentations
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Summary
• XML and HTML

• XML applications

• XML documents and the XML data model

• XML applications
– Documents
– Type Declarations and Definitions
– Stylesheets

http://www.w3schools.com/xml/default.asp
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