

9 - Database Management, PHP and MySQL 1

CM0133 Internet Computing

Database Management

PHP & MySQL

9 - Database Management, PHP and MySQL 2

Objectives

• Transactions and Transaction Management

• Database Management System (What can it do for us)

• SQL

• PHP and MySQL

• Examples

9 - Database Management, PHP and MySQL 3

Database Management Systems (DBMS)

• A database management system (DBMS) supports
reliable and efficient sharing of large sets of data among

several users. In particular, a DBMS provides the
following features:
– persistency

– efficient storage management

– recovery

– concurrency control

– ad-hoc queries (e.g. SQL)

– data security

• A DBMS allows to insert, retrieve and maintain data.

9 - Database Management, PHP and MySQL 4

Features of DBMS

• Persistent storage of data means that that data survive the

execution of programs.

• Efficient Storage Management: Databases support efficient

storage of large sets of data that do not fit entirely into main

memory. Data is moved from a secondary storage e.g. disk to

main memory using pages and buffers. There is a variety of

buffering techniques that can not be covered in this course.

Indexing techniqes are used to retrieve data from the disk. An

index I associated to a data file D is an ordered file (a sequence of

records) with entries (k
i
,p

i
) where k

i
is the value of the indexing

field of a record in D and p
i
 is the address of the block containing

that record.

9 - Database Management, PHP and MySQL 5

Indices

• Indices provide fast access to our records (e.g. binary search).

• A rule for your web databases: If you do a lot of search on an
attribute (column) then use an index! No matter which it will
improve your access.

• There are many ways to index data and they will be covered in
other lectures. You will come across clustering index, hashing,
B* Trees (hierarchical multilevel index).

• MySQL mostly implements a B-Tree index, if you work with
memory tables than hashing is used and if you work with spatial
data MySQL uses R-Trees.

http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html

9 - Database Management, PHP and MySQL 6

Transaction: An Execution of a DB Program

• Key concept is transaction, which is an atomic sequence
of database actions (reads/writes).

• Each transaction, executed completely, must leave the
DB in a consistent state if DB is consistent when the

transaction begins.

– Users can specify some simple integrity constraints on the data,

and the DBMS will enforce these constraints.

– Beyond this, the DBMS does not really understand the

semantics of the data.

– Thus, ensuring that a transaction (run alone) preserves

consistency is ultimately the user’s/developer's responsibility!

9 - Database Management, PHP and MySQL 7

Ensuring Atomicity

• DBMS ensures atomicity (all-or-nothing property) even if
system crashes in the middle of a transaction.

• Idea: Keep a log (history) of all actions carried out by the

DBMS while executing a set of transactions:

– Before a change is made to the database, the corresponding log

entry is forced to a safe location.

– After a crash, the effects of partially executed transactions are

undone using the log. (the change was not applied to database

but to the log itself!)

9 - Database Management, PHP and MySQL 8

Database Transactions - Atomicity

• Atomicity: Transactions are executed atomically. This

means that either none of the actions of a transaction is
carried out or all of them are carried out. Special
commands are carried out to indicate the start of a
transaction (begin transaction), the successful
completion of a transaction (commit transaction), and the

abort of a transaction (abort transaction).

9 - Database Management, PHP and MySQL 9

Consistency

• Transactions move the database from one consistent
state to another even if the database is accessed by

several users simultaneously, executing several
transactions interleaved (or in parallel). The traditional
correctness criterion for executing several transactions
interleaved is serializability.

• Serializability means that the overall effect of several
transactions executed interleaved is the same as if these
transaction had been executed in some serial order.

9 - Database Management, PHP and MySQL 10

Isolation & Durability

• Transactions are executed in isolation. Interim results of

a transaction are not visible to other transactions. This
means that effects of a transaction are visible to other
transactions only after it has been completed
successfully.

• Durability guarantees that once a transaction has been
completed successfully, its effects remain persistent

despite possible subsequent failures.

9 - Database Management, PHP and MySQL 11

Structure of a DBMS

• A typical DBMS has a
layered architecture.

• The figure does not show

the concurrency control
and recovery
components.

• This is one of several
possible architectures;
each system has its own
variations.

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers

must consider

concurrency

control and

recovery

9 - Database Management, PHP and MySQL 12

Structure of a DBMS (cont.)

Files and Access Methods

Buffer Management

Disk Space Management

DB

Parser + Optimizer +

Plan Execution

Query evaluation

engine

Recovery

Manager

Transaction

Manager

Lock

Manager

Index files + data

files+ system

catalog

Web
Forms

Application
Front Ends

SQL
Interface

SQL Commands

9 - Database Management, PHP and MySQL 13

Question ?

How can you test if a database or
information system supports data

integrity and consistency?

9 - Database Management, PHP and MySQL 14

Reasons for a DBMS

• Changes to the type and format of data may occur

frequently. Data independence is important

• Large amounts of data must be stored and be retrieved

efficiently

• Data must be updated reliably. Inconsistent database

states due to hardware and software failure are not

tolerable.

• Date are accessed by several users simultaneously.

• Unexpected queries should be handled fast.

• Data are very sensitive. Data security is very important.

9 - Database Management, PHP and MySQL 15

Reasons against DBMS

• The amount of data is small.

• The application is very simple, no future changes to data types
and data formats are expected.

• Concurrent access to the database is not required.

• The high costs of a data base management system (DBMS) are
unjustified (although nowadays there are low cost solutions)

• The application has strict real time requirements and DBMS
would be to slow.

• The application is very special and cannot be supported by a
standard DBMS efficiently.

9 - Database Management, PHP and MySQL 16

Querying a DBMS

• A DBMS provides a Query Language.

• Query languages allow querying and updating a DMBS in a simple

way.

• Most popular DML (Data Manipulation Language) : SQL(Structured

Query Language).

• Queries:

– List the name of student with sid=27373

– Name and age of students enrolled in CM0133

The following examples are SQL queries for

MySQL. There might be a difference with

another DBMS. MySQL often conforms with

ANSI SQL standard.

9 - Database Management, PHP and MySQL 17

SQL – CREATE TABLE

CREATE TABLE 'CM0133'.'students' (

 'uid' BIGINT NOT NULL AUTO_INCREMENT ,

 'firstName' VARCHAR(100) NOT NULL ,

 'surname' VARCHAR(100) NOT NULL ,

 'address' TEXT NULL ,

 PRIMARY KEY ('uid')

); MySQL Data Types

9 - Database Management, PHP and MySQL 18

CREATE TABLE

• Different database implementations support different
data types. For our examples we can use integer

(BIGINT), characters (VARCHAR (length)), Text, Date
and Timestamp.

• NOT NULL indicates a constraint. Data has to be
entered for this attribute. In our example key and full
name has to be provided but not the address (NULL).

• AUTO_INCREMENT is a non standard SQL
convenience function by MySQL that creates unique
integers for you by incrementing.

9 - Database Management, PHP and MySQL 20

UPDATE

UPDATE CM0133.students

SET address = 'Zurich'

WHERE students.uid =1;

• To change an entry we

use the UPDATE
command together with a
condition.

• We have a number of
operators at hand to
support that
– Logical operators: AND,

OR, NOT

– Equivalence op: ==, !=

– Comparision op: >,<, etc.

9 - Database Management, PHP and MySQL 21

DELETE

DELETE * FROM

CM0133.students

WHERE students.uid =1;

• The DELETE command
will delete entries. Again

we can use conditions on
which tuples we would
like to delete.

• Here the user with the
unique id 1 is deleted.

9 - Database Management, PHP and MySQL 22

SELECT

The SELECT command allows you to extract tuples from your database,
e.g.:

We will look closer at database queries in a tutorial and also how SQL
queries interact with PHP in the next lectures.

SELECT firstName, surname from CM0133.students

WHERE uid > 0 AND uid < 10

ORDER BY surname DESC;

9 - Database Management, PHP and MySQL 23

Connecting to Databases in PHP

• Connecting to databases in PHP is very straightforward

• Databases are required for storing large amounts of data
and quickly retrieving large amounts of data

• Example database data may be:
– Personal information

– Financial details

– Usernames/Passwords

– Stock for an online shop

– Web site content (content management systems)

• Before we continue, where do databases fit in with PHP
and the internet?

9 - Database Management, PHP and MySQL 24

Three-tier model

Web
Server

DBMS

Scripting
Engine

Database

Client Tier

Middle Tier

Database Tier

Scripts

Internet

Web
client

Web

client

Database
Management

System

9 - Database Management, PHP and MySQL 25

MySQL

• MySQL is a database management system (DBMS) for
relational databases, based on the Standard Query
Language (SQL)

• MySQL is open source

• The focus of this course is NOT to learn SQL

• However: you can use these notes as a basis for making
you sites interact with a database

9 - Database Management, PHP and MySQL 26

MySQL

• MySQL manages a system of relational databases

• A username and password are required to access the
database system

• Each database contains tables

• Each table contains records (rows)

• Records are made up of fields

• Warning – don't use a database unless you need one!

9 - Database Management, PHP and MySQL 27

MySQL
• phpAdmin provides an easy way to interact with and manage a MySQL

database

– provides an administrative interface to MySQL

 You have access through http://www.cs.cf.ac.uk/phpMyAdmin/ and through

program API.

• You can find notes describing how to use phpMyAdmin together with PHP
at

 http://docs.cs.cf.ac.uk/docs/notes/html/602

• Before you can use phpMyAdmin you first require a database to be created
on the server – the administrator (e.g. Robert Evans) has to do this

• You then get a password to access the database

9 - Database Management, PHP and MySQL 28

MySQL

• In the following example, we will create a database table using PHP and

SQL

• All database interaction will be through PHP and SQL

• This includes database table creation using PHP and SQL

• Note that you can alternatively create database tables via the

phpMyAdmin user interface.

9 - Database Management, PHP and MySQL 29

Creating an empty Table
1. We first connect to the database management system using

mysql_connect()

2. We then select the correct database within in that system
using mysql_select_db()

3. We then use mysql_query() to create a new table on the
database – e.g. we call this table login_info

4. The table is actually created by the SQL argument that we
give mysql_query(). e.g:

create table login_info (

id int(11) NOT NULL auto_increment,

username char(30) NOT NULL,

password char(80) NOT NULL,

primary key (id)

 - We then use mysql_close() to close the DBMS connection

9 - Database Management, PHP and MySQL 30

Creating an empty table
<?php

$connection = mysql_connect("ephesus.cs.cf.ac.uk", “username",
“password");

mysql_select_db("Florians_DB", $connection) or die("Failed!");

$create = "create table login_info(

id int(11) NOT NULL auto_increment,

username char(30) NOT NULL,

password char(80) NOT NULL,

primary key (id)

);";

mysql_query($create)

or die ("Could not create tables because ".mysql_error());

mysql_close();

?>

9 - Database Management, PHP and MySQL 31

Creating an empty table
• Note that mysql_connect() returns a DBMS connection handle,

and takes as its arguments:

– A server name

– A username

– A password

• Note that mysql_select_db() takes as its arguments:

– The name of the database on the DBMS

– A DBMS connection handle

• Note that (in this e.g.) the only argument mysql_query() takes is

a string representing an SQL query

9 - Database Management, PHP and MySQL 32

Inserting a row into a Table
<?php

 $connection = mysql_connect("ephesus.cs.cf.ac.uk", "username",
"password");

 mysql_select_db("Florians_DB", $connection) or die("Failed!");

 $insert = "INSERT INTO login_info values('NULL',‘un1','pw1');

 mysql_query($insert);

 mysql_close();

?>

This example inserts a row into the table with the username
un1 and the password pw1

9 - Database Management, PHP and MySQL 33

Retrieving data from a table

• The following program retrieves data from a database
table

• Note that data is stored in a table in rows

• We therefore retrieve data from a table one row at a time

• Each row we retrieve is an array

• Each entry in the array corresponds to a field in the table

• E.g. row[1] corresponds to a username value and

row[2] corresponds to a password value

9 - Database Management, PHP and MySQL 34

 <?php

 $connection = mysql_connect("ephesus.cs.cf.ac.uk",
“password", “username");

 mysql_select_db("Florians_DB",$connection) or die("Failed!");

 $retrieve_all = "SELECT * FROM login_info";

 $result = mysql_query($retrieve_all);

 // loop over each row in the result set and print row values

 while($row = mysql_fetch_row($result)) {

 for($i=0; $i<mysql_num_fields($result); $i++){

 print $row[$i]." ";

 }

 print "
";

 }

mysql_close();

 ?>

Note the use of two new

functions

9 - Database Management, PHP and MySQL 35

A practical database example
• Databases and PHP may be used with great effect to construct

content management systems

• For example:
– The entire content of a website may be stored in a database

– Site content is updated or changed by not altering the
HTML/PHP/JavaScript code – but by changing entries in a database

– The database itself may be edited using a web-based interface

• For example, a news website may store its stories on a database.
When new stories come in the database is altered, and the website
is automatically updated without any new programming.

9 - Database Management, PHP and MySQL 36

Links & Literature

• http://dev.mysql.com/tech-resources/articles/mysql_intro.html

• http://www.mysql.com/

• http://docs.cs.cf.ac.uk/docs/notes/html/602

• Hugh E. Williams and David Lane (2004) : PHP and
MySQL, O'Reilly

• Come to the labs and practice !

• Attached are the example discussed in this lecture

9 - Database Management, PHP and MySQL 39

INSPECT DB (command line)

SHOW databases; # show all available databases

USE CM0133; # select one

SHOW tables; # show tables of selected database

DESCRIBE customer; # describe one of the tables

9 - Database Management, PHP and MySQL 40

SQL EXAMPLES
SELECT surname, firstname FROM customer;

SELECT * FROM region ;

SELECT curtime();

SELECT pi()*(4*4);

SELECT * FROM region WHERE region_id <= 3;

SELECT region_name FROM region WHERE region_id <= 3;

SELECT id FROM customer WHERE (surname='Marzalla' AND firstname

LIKE 'M%') OR birth_date='1980-07-14';

SELECT * FROM customer WHERE birth_date > '1989-01-01';

SELECT * FROM customer WHERE birth_date < '1989-01-01';

9 - Database Management, PHP and MySQL 41

SQL EXAMPLES
SELECT surname, firstname FROM customer WHERE city =

'Portsea' and firstname = 'James' ORDER by surname DESC;

SELECT city, COUNT(*) AS cnt FROM customer GROUP BY

city;

SELECT city, count(*) as cnt from customer GROUP BY city

HAVING cnt > 2

SELECT city, MAX(birth_date) FROM customer GROUP BY

city;

SELECT city FROM customer GROUP BY city; equivalent to

SELECT DISTINCT city from customer ;

9 - Database Management, PHP and MySQL 42

SQL EXAMPLES

Querying details without JOIN - would have to be stored in php

arrays and then be further processed. Tables can be

matched up using JOINS - see next examples.

SELECT surname FROM customer WHERE id=2;

SELECT * FROM region WHERE id=5;

Natural Join via identical elements

SELECT * FROM winery NATURAL JOIN region ORDER BY

winery_name;

9 - Database Management, PHP and MySQL 43

SQL EXAMPLES
JOIN query with explicitly specifying attributes

SELECT winery_name, region_name FROM winery, region

WHERE winery.region_id = region.region_id ORDER BY

winery_name;

Joining more than two tables

SELECT * FROM customer,orders, region WHERE

orders.customer_id = customer.id AND

orders.region_id=region.region_id;

Variation number of orders

SELECT firstName,surname,count(*) as cnt FROM customer,orders,

region WHERE orders.customer_id = customer.id AND

orders.region_id=region.region_id group by surname order by cnt;

