

8 - Databases & SQL 1

CM0133 Internet Computing

Databases & SQL

8 - Databases & SQL 2

Objectives

• What is a database?

• Definitions

• Data Modelling

• The Relational Model

• SQL

Note: Databases, Data Modelling Information Systems are

covered in other lectures during your studies. This lecture only

covers so much to enable you to use databases for the

implementation with web sites. Some of what I introduce is

specific to MySQL.

8 - Databases & SQL 3

Database

• A database is a collection of interrelated data of different data types.

• Data that answers a user's query is information.

• Databases are the core of information systems. A system that provides

answers to users' questions and needs based on data is an information
system.

• A website powered by a database can be the interface of an information

system:

– A web site that is capturing registered users

– A client tracking application for social service organisations

– A medical record system for a health care facility

– Your personal address book in your web-mail client

– A collection of word processed documents (e.g. google docs)

– A system that issues airline reservations

– etc.

8 - Databases & SQL 4

Data Models

• Data models are notations for describing data.

• They are meta concepts defining the contents, structure,
and meaning of data. This meta data which describe

data populating a database must be distinguished from
the data itself.

• Data models can be classified into:
– Conceptual data models

– Logical data models

– Physical data models

8 - Databases & SQL 5

Levels of Abstraction

� Views describe how users
see the data.

� Conceptual schema defines
logical structure

� Physical schema describes
the files and indexes used.

• (sometimes called the
ANSI/SPARC model)

Physical Schema

Conceptual Schema

View 1 View 2 View 3

DB

Users

8 - Databases & SQL 6

Example: University Database

• Conceptual schema:

– Students(sid: string, name: string,
 login: string, age: integer, gpa:real)

– Courses(cid: string, cname:string,

credits:integer)

– Enrolled(sid:string, cid:string,
grade:string)

• External Schema (View):

� Course_info(cid:string,enrollment:integer)

• Physical schema:

– Relations stored as unordered files.

– Index on first column of Students.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

DB

8 - Databases & SQL 7

Data Independence

• Applications insulated from

how data is structured and

stored.

� Logical data independence:

Protection from changes in

logical structure of data.

� Physical data independence:

Protection from changes in
physical structure of data.

� Q: Why are these particularly

important for DBMS?

Physical Schema

Conceptual Schema

View 1 View 2 View 3

DB

8 - Databases & SQL 8

Data Models

• Conceptual Models provide easy to perceive high level concepts.
They are used in early design stages of your information system, e.g.

the Entity Relationship Model, independently from any existing
database management system.

• Physical data models provide low-level concepts to describe how data
is stored and accessed in the computer.

• Logical data models bridge the gap between conceptual and physical
models and are often referred to as implementation data models:

– Hierarchical data model

– Network data model

– Relational data model

– Object / Relational model

– Object oriented model

– and others

8 - Databases & SQL 9

Relational Model

• The Relational Model was introduced by E. Codd in 1970

and has been implemented in many commercial data base

management systems.

• Represents data in a database as a collection of relations.

A relation can be thought of as a table of values

representing a set of similar real world objects and their

relationships.

• The rows of a table, called tuples, define real world objects

or relationships between real world objects

• The columns of a table represent attributes and attribute

values, respectively.

8 - Databases & SQL 10

Example & Key

• Table city1

ZIP Name

5020 Vienna

3040 Paris

6060 Rome

• The key of a relation

schema is a minimal set of

attributes such that no two

different tuples in a relation

agree on them.

• Both attributes are key

candidates in the table city1.

• In this example one of the

two can be selected to be

the primary key.

– Which properties should the

primary key have ?

8 - Databases & SQL 11

Foreign Key

• A foreign key of a relation schema is a set of attributes

that is a primary key in another relation schema of the
same database.

ZIP Name

5020 Vienna

3040 Paris

6060 Rome

Name Population

Vienna 2,2

Paris 11,2

Rome 3,7

Primary Key : ZIP

Foreign Key : Name
Primary Key: Name

Question: Are these good keys?

8 - Databases & SQL 12

Normalization

• Normalization is the process applied during database

design to test and improve the quality of database

schemes.

• The relation schemes are tested whether or not they

belong to certain normal forms.

• Relation schemes which do not satisfy some normal form

are decomposed into smaller relations to avoid

redundancies and anomalies caused by redundancies.

• Decomposition helps to get data chunks that represent

one real world object only and thus support easy

maintenance and extension of databases.

8 - Databases & SQL 13

First Normal Form (1. NF)

• A relational schema is in first normal form (1. NF) if the

domains of its attributes consist of atomic values.

• Example: Stock is not in 1. NF because the attribute

warehouse is set valued.

part warehouse

101 {1,3}

102 {1,2,4}

103 {4}

stock

8 - Databases & SQL 14

Redundancy

• Now the table is in 1.NF. But first normal form does not

help to avoid anomalies due to redundancy in relational
schemes as the following example shows:

part warehouse quantity address

101 1 25 St. Mary Street

102 3 410 Welfield Rd.

102 1 300 St. Mary Street

112 4 10 City Rd.

stock

redundant

address

Keys are underlined in this examples.

8 - Databases & SQL 15

Update Anomaly

• Redundancy may cause an anomaly on address
modification (update anomaly). If warehouse 1 moves to

a new address the address must be changed for all parts
located at warehouse 1. :

part warehouse quantity address

101 1 25 Newport Rd.

102 3 410 Welfield Rd.

102 1 300 St. Mary Street

112 4 10 City Rd.

stock

Update

anomaly

8 - Databases & SQL 16

Insertion Anomaly

• Similarily it is not possible to store the address of a new

warehouse which has no parts in it (insertion anomaly),
unless using null values.

part warehouse quantity address

101 1 25 Newport Rd.

102 3 410 Welfield Rd.

102 1 300 Newport Rd.

112 4 10 City Rd.

8 - Databases & SQL 17

Second Normal Form (2. NF)

• A relation schema is in second normal form (2. NF) if no non-
key attribute is dependent on part of the primary key.

• Given the previous example we can see that non-key attribute
address is dependent on attribute warehouse.

• To obey 2.NF we have to split the relation stock into two

relations.

stock part warehouse qty

101 1 25

102 3 410

102 1 300

112 4 10

warehouse address

1 Newport

Rd.

3 Welfield

Rd.

4 City Rd.

warehouse

8 - Databases & SQL 18

Example

• If warehouse 1 moves now to a new address (High
Street) it's address entry remains consistent, as it is not

stored redundant.

• If we remove part 112 the address of warehouse 4 is still

 available. We have overcome the previously mentioned
anomalies (update & insertion).

part warehouse qty

101 1 25

102 3 410

102 1 300

112 4 10

warehouse address

1 High Street

3 Welfield

Rd.

4 City Rd.

warehousestock

8 - Databases & SQL 19

Further Anomalies

• Although in 2.NF (no non-key attribute is dependent on part

of the primary key) the following example does not avoid
all anomalies:

no. dept. building

1215 Accounting A12

2410 Sales A14

2412 PR B8

809 Accounting A12

employee

There is a functional dependency in this relation:

 � �FD = { no. dept, dept building}

8 - Databases & SQL 20

Update & Deletion Anomaly

• Modifying an address, e.g. moving department

Accounting from building A12 to building A7, may cause
an update anomaly.

• If a department has no employees for a short time, e.g.
employee no. 2412 is fired, the information which
building locates the department is lost (deletion
anomaly), unless using null values .

no. dept. building

1215 Accounting A7

2410 Sales A14

2412 PR B8

809 Accounting A12

employee

Update

anomalyDeletion

 anomaly

8 - Databases & SQL 21

Third Normal Form (3. NF)

• A relation scheme is in third normal form (3. NF) if no non-key

attribute is transitively dependent on the primary key.

• Given the set of functional dependencies over relation employee

(see before) we see that non-key attribute building is transitively

dependent on the primary key (attribute no.). To obey 3.NF relation

employee is split into two relations. Then each real world object is

represented by exactly one tuple of one relation schema.

no. dept

1215 Accounting

2410 Sales

2412 PR

809 Accounting

dept building

Accounting A12

PR B8

Sales A14

employee dept

8 - Databases & SQL 22

Summary Normalization

• Normalization helps to avoid anomalies. However do not split
relations arbitrarily. Using a database with a website is not
difficult, but requires some careful design considerations if
you want to avoid consistency problems and also
performance bottlenecks.

• This table is in 3.NF and the previous anomalies are
removed.

no. dept

1215 Accounting

2410 Sales

2412 PR

809 Accounting

dept building

Accounting A7

PR B8

Sales A14

deptemployee

Although

deleted

PR has

still an

address.

All

accounting

employees

are now at

the

modified

address

8 - Databases & SQL 23

Database Management Systems (DBMS)

• A database management system (DBMS) supports

reliable and efficient sharing of large sets of data among
several users. In particular, a DBMS provides the
following features:
– persistency

– efficient storage management

– recovery

– concurrency control

– ad-hoc queries (e.g. SQL)

– data security

• A DBMS allows to insert, retrieve and maintain data.

8 - Databases & SQL 24

Features of DBMS

• Persistent storage of data means that that data survive the

execution of programs.

• Efficient Storage Management: Databases support efficient

storage of large sets of data that do not fit entirely into main

memory. Data is moved from a secondary storage e.g. disk to

main memory using pages and buffers. There is a variety of

buffering techniques that can not be covered in this course.

Indexing techniqes are used to retrieve data from the disk. An

index I associated to a data file D is an ordered file (a sequence of

records) with entries (k
i
,p

i
) where k

i
is the value of the indexing

field of a record in D and p
i
 is the address of the block containing

that record.

8 - Databases & SQL 25

Primary Index
1 3 7 9

11 12

19 20

1 �

11 �

19 �

�

A primary index is specified on the ordering key field of a data file. The

index file contains one entry for each block in the data file (e.g. value of

the index field and address of the first record in each block).

Consider a dictionary. It contains a primary index with one index

entry for every page (= block). The index entry is printed on the header of

the page and contains the first and last entry given at this page.

8 - Databases & SQL 26

Indices

• Indices provide fast access to our records (e.g. binary search).

• A rule for your web databases: If you do a lot of search on an
attribute (column) then use an index! No matter which it will
improve your access.

• There are many ways to index data and they will be covered in
other lectures. You will come across clustering index, hashing,
B* Trees (hierarchical multilevel index).

• MySQL mostly implements a B-Tree index, if you work with
memory tables than hashing is used and if you work with spatial
data MySQL uses R-Trees.

http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html

8 - Databases & SQL 27

Transaction: An Execution of a DB Program

• Key concept is transaction, which is an atomic sequence
of database actions (reads/writes).

• Each transaction, executed completely, must leave the
DB in a consistent state if DB is consistent when the

transaction begins.

– Users can specify some simple integrity constraints on the data,

and the DBMS will enforce these constraints.

– Beyond this, the DBMS does not really understand the

semantics of the data.

– Thus, ensuring that a transaction (run alone) preserves

consistency is ultimately the user’s/developer's responsibility!

8 - Databases & SQL 28

Ensuring Atomicity

• DBMS ensures atomicity (all-or-nothing property) even if
system crashes in the middle of a transaction.

• Idea: Keep a log (history) of all actions carried out by the

DBMS while executing a set of transactions:

– Before a change is made to the database, the corresponding log

entry is forced to a safe location.

– After a crash, the effects of partially executed transactions are

undone using the log. (the change was not applied to database

but to the log itself!)

8 - Databases & SQL 29

Structure of a DBMS

• A typical DBMS has a
layered architecture.

• The figure does not show

the concurrency control
and recovery
components.

• This is one of several
possible architectures;
each system has its own
variations.

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers

must consider

concurrency

control and

recovery

8 - Databases & SQL 30

Structure of a DBMS (cont.)

Files and Access Methods

Buffer Management

Disk Space Management

DB

Parser + Optimizer +

Plan Execution

Query evaluation

engine

Recovery

Manager

Transaction

Manager

Lock

Manager

Index files + data

files+ system

catalog

Web
Forms

Application
Front Ends

SQL
Interface

SQL Commands

8 - Databases & SQL 31

Database Transactions - Atomicity

• Atomicity: Transactions are executed atomically. This

means that either none of the actions of a transaction is
carried out or all of them are carried out. Special
commands are carried out to indicate the start of a
transaction (begin transaction), the successful

completion of a transaction (commit transaction), and the
abort of a transaction (abort transaction).

8 - Databases & SQL 32

Consistency

• Transactions move the database from one consistent

state to another even if the database is accessed by
several users simultaneously, executing several
transactions interleaved (or in parallel). The traditional
correctness criterion for executing several transactions
interleaved is serializability.

• Serializability means that the overall effect of several
transactions executed interleaved is the same as if these

transaction had been executed in some serial order.

8 - Databases & SQL 33

Isolation & Durability

• Transactions are executed in isolation. Interim results of
a transaction are not visible to other transactions. This

means that effects of a transaction are visible to other
transactions only after it has been completed
successfully.

• Durability guarantees that once a transaction has been
completed successfully, its effects remain persistent
despite possible subsequent failures.

8 - Databases & SQL 34

Question ?

How can you test if a database or
information system supports data

integrity and consistency?

8 - Databases & SQL 35

Reasons for a DBMS

• Changes to the type and format of data may occur

frequently. Data independence is important

• Large amounts of data must be stored and be retrieved

efficiently

• Data must be updated reliably. Inconsistent database

states due to hardware and software failure are not

tolerable.

• Date are accessed by several users simultaneously.

• Unexpected queries should be handled fast.

• Data are very sensitive. Data security is very important.

8 - Databases & SQL 36

Reasons against DBMS

• The amount of data is small.

• The application is very simple, no future changes to data types
and data formats are expected.

• Concurrent access to the database is not required.

• The high costs of a data base management system (DBMS) are
unjustified (although nowadays there are low cost solutions)

• The application has strict real time requirements and DBMS
would be to slow.

• The application is very special and cannot be supported by a
standard DBMS efficiently.

8 - Databases & SQL 37

Querying a DBMS

• A DBMS provides a Query Language.

• Query languages allow querying and updating a DMBS in a simple

way.

• Most popular DML (Data Manipulation Language) : SQL(Structured

Query Language).

• Queries:

– List the name of student with sid=27373

– Name and age of students enrolled in CM0133

The following examples are SQL queries for

MySQL. There might be a difference with

another DBMS. MySQL often conforms with

ANSI SQL standard.

8 - Databases & SQL 38

SQL – CREATE TABLE

CREATE TABLE 'CM0133'.'students' (

 'uid' BIGINT NOT NULL AUTO_INCREMENT ,

 'firstName' VARCHAR(100) NOT NULL ,

 'surname' VARCHAR(100) NOT NULL ,

 'address' TEXT NULL ,

 PRIMARY KEY ('uid')

); MySQL Data Types

8 - Databases & SQL 39

CREATE TABLE

• Different database implementations support different
data types. For our examples we can use integer

(BIGINT), characters (VARCHAR (length)), Text, Date
and Timestamp.

• NOT NULL indicates a constraint. Data has to be
entered for this attribute. In our example key and full
name has to be provided but not the address (NULL).

• AUTO_INCREMENT is a non standard SQL
convenience function by MySQL that creates unique
integers for you by incrementing.

8 - Databases & SQL 41

UPDATE

UPDATE CM0133.students

SET address = 'Zurich'

WHERE students.uid =1;

• To change an entry we

use the UPDATE
command together with a
condition.

• We have a number of
operators at hand to
support that
– Logical operators: AND,

OR, NOT

– Equivalence op: ==, !=

– Comparision op: >,<, etc.

8 - Databases & SQL 42

DELETE

DELETE * FROM

CM0133.students

WHERE students.uid =1;

• The DELETE command
will delete entries. Again

we can use conditions on
which tuples we would
like to delete.

• Here the user with the
unique id 1 is deleted.

8 - Databases & SQL 43

SELECT

The SELECT command allows you to extract tuples from your database,
e.g.:

We will look closer at database queries in a tutorial and also how SQL
queries interact with PHP in the next lectures.

SELECT firstName, surname from CM0133.students

WHERE uid > 0 AND uid < 10

ORDER BY surname DESC;

8 - Databases & SQL 44

Literature

• http://dev.mysql.com/doc/ - MySQL documentation for

download, lot of MySQL Tutorials on the Web.

• Lot of database books in our library
http://library.cf.ac.uk

• http://www.unixspace.com/context/databases.html

• Google, Yahoo for Database Tutorials on the Web !

