CMO01383 Internet Computing

7 More PHP
String Manipulation & Regular Expressions

7 - More PHP

Objectives

* Variables and Memory

* String manipulation

* What are regular expressions

* What can regular expressions be used for

* Why regular expressions can seem daunting

7 - More PHP

| |

Automatic Type Conversion

Will result in 32, despite the

Smystring = “127; fact that one variable is a

Smyinteger = 20; g d c B
print $mystring + $myinteger; string and one 1s an integer.

Sbool = true; Outpl.lt:
print “Bool is set to $bool\n”; Bool is set to 1
Sbool = false;

print “Bool is set to $bool\n”; Bool is set to

True is converted to 1 while false is converted to an empty string.
To change that behaviour we need an explicit cast:

print “Bool is set to %;
print (int) $bool;
7 - More PHP

|

Variable Variables

. Allow you to access the contents of a variable without knowing its name directly
—itis like indirectly referring to the variable:

Sbar 10;

Sfoo = “bar”;

. From that point, there are two ways to output the value of $bar:

print $bar;
print $$foo;

. PHP will lookup $foo, convert it to a string and look up the variable of the same
name and return its value. This indirect access is possible at an arbitrary level of
complexity, e.g. $$$bar and $$$$$foo.

7 - More PHP

References

* When you use the = (assignment) operator, PHP performs a “copy
assignment”. It takes the value from operand two and copies it into
operand one. This does not work when we want to be able to
change operand two later. It is then when we use references.

‘ |

* References are variable aliases. The & operator creates the alias:

$big_long_variable_name = “PHP”

$short = & $big_long_variable_name;
$big_long_variable_name .= “ rocks!”;
print “\$short is $short\n”;

print “Long is $big_long_variable name\n”;

$short is PHP rocks !

results in:
Long is PHP rocks !

7 - More PHP

|

References Il

* If we continue with the previous example and change the
values after the assignment:

$short = “Programming $short”;
print “\$short is $short\n”;
print “Long is $big_long_variable_name\n”;

$short is Programming PHP rocks !

results in: Long is Programming PHP rocks !

* This is very useful for functions, when we want to avoid

copying large strings or arrays: [function sret_ref () {
$var = “PHP”;
return $var;

Note the & in the code:)

Sv = & ret_ref();

|

7 - More PHP

Memory Management - Symbol Tables

* PHP uses reference counting and copy-on-write to
manage memory.

* To do that PHP utilizes symbol tables. There are two
parts to a variable. It's name e.g. $name and its value
e.g. “Fred”. A symbol table is an array that maps variable
names to positions of their values in memory.

* When you copy a value from one variable to another,
PHP doesn't get more memory for a copy of the value.
Instead it updates the symbol table to say both variables
are names for the same “chunk of memory”.

7 - More PHP

‘ |

Copy-on-write

» So the following code does not actually create a new array.

$worker = array (“Fred”, 35,”Flintstone”);
Sother = $worker; // array isn't copied

« If you then modify either copy, PHP allocates the memory and
makes the copy:

‘Sworker[l] = 36; ‘

» By delaying the allocation and copying, PHP saves time and
memory in lot of situations. This is copy-on-write.

7 - More PHP

Reference Count

» Each value pointed to by a symbol table has a reference count.
The reference count represents the number of ways there are to
access that piece of memory.

‘ |

« After the initial assignment of the array $worker and $worker to
$other, the array pointed to by the symbol table entries $worker
and $other has reference count of 2.

« When a variable goes out of scope (e.g. end of the function), the
reference count is decreased by one.

« When the reference count of a value reaches 0, its memory is
freed. This is reference counting.

« With isset(var) and unset(var) you can gain control of the memory
management.

7 - More PHP

|

strlen($str); Length of string

$strisi]; Access ith character
trim($str,[, charlist]);
ltrim($str,[, charlist]);

tri tr,[, charlist]); h h h)
rtrim(gstr, [, charlist]) leftside, rtrim — rightside only.

Changing the case to lower /

strtolower($str); uppercase,

strtoupper ($str);

ucfirst($str); string
ucwords ($str); Operates only on first character of
each word
7 - More PHP

Operates only on first character of

trims whitespace, optional characters
can be trimmed with charlist, Itrim —

String Manipulation

$name = “Fred Flintstone”; | Result:
$fluff = substr($name,6,4);

int”
$sound = substr($name,11l);

“one”
substr_replace(string,
replacement,

another string.
start,length);

stremp(stringl,string2);
Compares two strings

string2

7 - More PHP

* 0 -if the two strings are equal

* >0 -if string1 is greater than

replaces a part of a string with

* <0-ifstring1 is less than string2

String - Replace

str_replace ($search, Sreplace,
Ssubject, [, int &Scount

]

Many more functions can be found at http://php.net

But what if you need something more fancy?

7 - More PHP

12

Regular Expressions

* A regular expression (regex or regexp for short) is a
special text string for describing a search pattern. You
can think of regular expressions as wildcards with a
range of additional capabilities.

* You are probably familiar with wildcard notations such as
*.txt to find all text files in a file manager.

The regex equivalent is .*\.txt$.

7 - More PHP 1

‘ |

Regular Expressions

» Offer you more power over your strings
— Replace text
— Test for a pattern within a string
— Extract a substring from within a String

* Have a complex syntax

 String functions are usually faster and easier to read.
Use regular expressions with care and if you have a
particular need.

7 - More PHP 14

PHP Regular Expressions

* PHP supports two types of regular expressions
— POSIX-extended
— Perl-Compatible Regular Expressions (PCRE)

* PCRE are more powerful than the POSIX ones and also
faster.

* Basic PCRE functions are:

preg_match (pattern, text);
preg_match_all (pattern, text);

Preg_match applies the pattern to the text and returns 1 if it found a match
and 0 if it doesn't. For speed reasons only the first match is returned
(preg_match_all does not exit after first match — more later).

7 - More PHP 15

Examples |

preg_match(“/php/”, “php”) True

preg_match(“php/”, “php”) Error; you need a
slash at the start

preg_match(“/php/”, “PHP”) False, regexps are
case-sensitive

preg_match(“/php/i”, “PHP”) True; /i means
case-insensitive

preg_match(“/Foo/i”, “FOO”) True

7 - More PHP 16

« Regular expressions are formed
— Starting with a delimiter (forward slashes (/), hash signs (#) and tildes (~))
— Followed by a sequence of special symbols and words to match
— Then another delimiter (see above)
— Optionally a modifier, i.e. string of letters that affect the expression (e.g. i modifier in
the previous example)

« If the delimiter needs to be matched inside the pattern it must be escaped
using a backslash. If the delimiter appears often inside the pattern, it is a
good idea to choose another delimiter in order to increase readability.

/http:\/\// The preg_quote() function may be used to
#http://# escape a string for injection into a pattern
and its optional second parameter may be

used to specify the delimiter to be escaped.

7 - More PHP 17

Writing a Regex Checker

<?php extract ($_POST); 72>

<html>
<hl>Regular Expression Checker</hl>

<form method="POST" action="<?php $_SERVER['PHP_SELF']; ?>">

Pattern: <textarea name="pattern" cols="140" rows="3">
<?php print ((isset ($pattern))? Spattern: ''); 2>
</textarea>

String: <input type="text" name="str"
value="<?php print ((isset($str)) ? $str : ''); 2>" />

<input type="submit" value= "Test Expression" />

</form> <!-- continued on next slide -->

7 - More PHP 18

Writing a Regex Checker cont.

<?php
if (isset($pattern) && isset($str)) {
Stest = preg_match($pattern, $str);

print "
" ;

if (Stest) {
print $pattern . "

 matches

 " . $str ;
} else {
print $pattern . "

 does not match

" . $str ;
}
} else {

print "<p style='font-color:red;'> Enter a pattern and a expression.</p>";

<html>

7 - More PHP 19

Regex Character Classes

* Regex allow you to form character classes of words using
brackets []
— [Ff] will match “F” or “f”
— [A-Z] will match the range of all upper-case letters
— [A-Z][a-z] matches all letters, whether upper or lower case
— [a-z0-9] matches lower-case letters and numbers only

» At the beginning of a Character class the caret * means “not”
- [*A-Z] matches everything but upper-case letters
— [*A-Za-z0-9] will accept symbols only — no upper-case
letters, no lower-case letters, no numbers

7 - More PHP 20

preg_match(*/[Ffloo/”, “Foo”) True

preg_match(“/[*Ffloo/", “Foo”) False, regex says anything not
F or f followed by oo, would
match too, boo, zoo

preg_match(“/[A-Z][0-9]/", “K9") True

preg_match(*/[A-S]esting/”, “Testing”) False, acceptable range
ends at S

preg_match(“/[A-T]esting/”, “Testing”) True, range is inclusive

preg_match(“/[a-z]esting[0-9][0-9]/, “Testing AA”) False

7 - More PHP 21

Regex Character Classes - Examples

preg_match(“/[a-z]esting[0-9][0-9]/",

“testing99)

True

preg_match(*/[a-z]esting[0-9][0-9]/",

“Testing99)

preg_match(“/[a-z]esting[0-9][0-
“Testing99)

preg_match(“/[*a-z]esting/”,
“Testing99)

preg_match(“/[*a-z]esting/i”,

False, case sensitivity

9", True, case problems
fixed with modifier i
True, first character
can be anything that
is not a lowercase letter
False ! The

“testing99) range excludes lowercase characters
only. But i makes it insensitive, which
turns [*a-z] into [*a-zA-Z] Il

Regex Special Characters

* The metacharacters +, *, ? and { } affect the number of

times a pattern should be matched and () allows you to

create subpatterns, and $ and * affect the position
+ ... match 1 or more of the previous expression
* ... match 0 or more of the previous expression
? ... match 0 or one of the previous expression

preg_match (“/[A-Za-z]*/",
// matches “”, “a”,
hat on”, etc.

$string);
“aaaa”,

“The sun has got his

preg_match (“/-?[0-9]1+/”, $string);
// matches 1, 100, 98798798, and also -1,
-23402. etc. - -2

7 - More PHP

23

Required and Optional Matches

* This example shows two character classes where the

first is required and the second optional:

preg_match (“/\$[A-Za-z_] [A-Z] [a-z_0-9]*/", $string);

%_/&_\/_/

optional
* matches 0 or more times

7

Because $ is a regex
symbol (start of line)
we need a backslash \

required

This regex matches PHP variable names.

7 - More PHP

Examples

preg_match(*/[A-Z]+/","123”); False
preg_match(“/[A-Z][A-Z0-9]+/i","A123"); True
preg_match(“/[0-9]?[A-Z]+/", True, matches “0G”
"10 Green Bottles”);

preg_match(*/[0-9]?[A-Z0-9]*/i", True

"10 Green Bottles”);

preg_match(“/[A-Z]?[A-Z]?[A-Z]*/",); True; 0 or 1 match,

then 0 or 1 match,
then 0 or more means
“” matches.

7 - More PHP

n
@

Regex - Braces

Braces { } can be used to define specific repeat counts in
three different ways:

1) {n} ... matches n instances of the previous expression

2) {n,} ... matches a minimum of n instances of the
previous expression

3) {m,n} ... match a minimum of m and a maximum on n
instances of the previous expression.

7 - More PHP 26

Examples

preg_match(*/[A-Z){3}/","FuZ”); False, the regex will match exactly 3
uppercase letters

preg_match(*/[A-Z){3}/i","Fuz"); True, same as above but modifier i set.

preg_match(“/[0-9]{3}-[0-9]{4}/","555-1234"); True, precisely 3 numbers then
dash then 4 numbers matches U.S.
Telephone numbers

preg_match(*/[a-z]+[0-9]?[a-z]{1}/","aaa1”); True, must end with one lowercase
letter

preg_match(“/[A-Z]{1,}99/","99"); False, must start with at least one uppercase
letter

preg_match(“/[A-Z]{1,5}99/","FINGERS99"); True; “S99", “RS99", “ERS99", “GERS99",
and “NGERS99” all fit criteria
preg_match(“/[A-Z]{1,5}[0-9]{2}/","adams42") True

7 - More PHP 27

» Parenthesis inside regular expressions allow you to
define subpatterns that should be matched individually.
The most common use for these is to specify groups of
alternatives for matches, allowing you to match very
specific criteria.

* E.g. (cat|car) sat on the (mat|drive) matches
1) The cat sat on the mat
2) The car sat on the mat
3) The cat sat on the drive
4) The car sat on the drive

7 - More PHP 28

preg_match(*/(Linux|Mac OS X)/”, “Linux”) True
preg_match(*/(Linux|Mac OS X){2}/", “Mac OS Xlinux") True
preg_match(*/(Linux|Mac OS X){2}/", False, There is a
“Mac OS X Linux") space there, which is not
part of the regex.
preg_match(“/contra(diction|vention)/”, True
"contravention”)
preg_match(*/Windows ([0-9][0-9]+|Me|XP)/", True, matches
"Windows 2000”) 95,98,2000,2003,
Me, and XP

preg_match(“/Windows (([0-9][0-9]+|Me|XP)|Codename (Whistler|Longhorn))/”,"Windows
Codename Whistler”)
True, uses nested sub-
patterns to match all version of
Windows but also Codenames.

7 - More PHP 29

Start and End of Line

* The dollar $ and the caret * symbols, stand for “end of
line” and “start of line”, respectively.

smultitest="This is \ma long test \nto
see whether \nthe dollar \nSymbol \nand
the \ncaret symbol \nwork as planned”;

This is

A long test

To see whether
The dollar
Symbol

And the

caret symbol
Work as planned.

\n ... NewLine character

7 - More PHP 30

Examples

preg_match
preg_match

“/is$/m”, Smultiline);
“/the$/m”, $multiline);

(
(
preg_match (“/"the/m”, S$multiline); TRUE
preg_match (“/"Symbol/m”, S$multiline); i
This is
A long test
To parse multiline Strings we need the m To see whether
Modifier. Without it the line would be The dollar
interpreted as one line. The modifier m Symbol
will consider start (*) and end of lines ($) And the
. . caret symbol
whereever a newline character is. Work as planned.

Words and Whitespace Regex

* The previously presented patterns are very common but
there are many more we will not cover. 5 patterns that
are very often in use are the following word and
whitespace patterns:

1) .. match a single character except newline
2)\s ... match any whitespace
3)\S ... match any non whitespace
4)\b ... on aword boundary
5)\B ... not on a word boundary
7 - More PHP 32

Example

$string = “Foolish child!”;
preg_match(“\SK7}[\s]{1}[\S}{6}/",$string) True

$string = “Foolish child!”;

preg_match(“/oo\b/i”,$string) False (but e.g. foo, zoo)

preg_match(“/00\B/i",$string) True (also e.g. wool, pool)

7 - More PHP 33

Storing Matched Strings

* The preg_match() and the preg_match_all() function
have a third parameter that allows you to pass in an
array for it to store a list of matched strings.

$a = “Foo moo boo tool foo”;
preg_match (“/ [A-Za-z]oo\b/1i”, a, Smatches);

‘ preg_match_all (“/[A-Za-z]oo\b/i”,a, Smatches);

var_dump(var) outputs the
contents of the variables passed
to it for closer inspection and is
particularly useful with arrays
and objects.

7 - More PHP 34

‘ var_dump ($matches) ;

Replacements with Regex

* The function preg_replace() allows to accomplish string
replacement. It works the same way as preg_match().

preg_replace (pattern, replacement, subject);

Example: sa = “Foo moo boo tool foo”;
$b = “preg_replace(“/[A-Za-z]oo\b/”, “Got word: $0\n”, $a);
That script would output the following: The 2. parameter is plain text but
can contain $n to insert the text
Got word: Foo matched by subpattern n of your

regex rule. If you have no
subpatterns, you should use $0 to
use the matched text.

Got word: Foo
Got word: Foo
tool Got word: foo

7 - More PHP 35

Regex Replacement - Subpatterns

* If you are using subpatterns then $1, $2 and so on are
set to the individual matches for each subpattern:

$match = “/the (car|cat) sat on the (drive|mat)/”;
$input = “the cat sat on the mat”;
print_reg_replace ($Smatch, “Matched $0, $1, and $2\n”, S$input);

$0 ... the cat sat on the mat
$1 ... cat
$2 ... mat

7 - More PHP 36

Screen Scraping with Regex

» Regular expressions can be used to extract information of a
web page.

= Think of sports results or images or other interesting items that
you might want to extract from a page and use on your page.

» These technique is called screen scraping

» Before you extract materials from another website you need to
check the legal situation.

— What does the terms of use of the target website say about extracting
information by automated means ?

— Can you republish contents extracted, what are the conditions in terms
of ownership and copyrights ?

7 - More PHP 37

Image Extractor

<?php
// extract the variables specified in the form on this site
extract ($_POST) ;

2>

<form method="POST" action="<?php $_SERVER['PHP_SELF']; ?>">

String: <input type="text" name="url" value="<?php print
((isset ($url)) 2 $url : ''); 2>" />

<input type="submit" value= "Extract Images" />

Note: Illustration only head, body, etc.
are omitted in this example

</form>

7 - More PHP 38

Image Extractor

For this example to work you
need Curl support enabled by
your PHP installation.

// create curl resource
$ch = curl_init();

// set url - this is the on entered into the form
curl_setopt ($ch, CURLOPT_URL, $url);

//return the transfer as a string
curl_setopt ($ch, CURLOPT_RETURNTRANSFER, 1);

// S$output contains the output string
$output = curl_exec($ch);

// Here comes the code to extract tags from $Soutput

// close curl resource to free up system resources
curl_close(S$ch);

7 - More PHP 39

Spat = "/<img[*>]+>/i" ;
preg_match_all ($pattern, Soutput, $matches) ;

foreach($matches[0] as $key => $img_tag)
{
Spat = "%sre=[\s]*\"%";

if (preg_match("$sre=[\s]*\"/%", $img_tag)) {
// image referenced with a relative link without /
print (preg_replace ($pat, ("src=\"http://" . Surl),
$img_tag) ."\n")
}

else if(..)preg_match("$sre=[\s]*\" (http)%", $img_tag)) {

// image referenced with an absolute link

print ($img_tag . "\n") ; // no changes required just print
}
else {

// image referenced with an relative link but no backslash
print (preg_replace ($pat, ("src=\"http://" . Surl . "/"),
Simg_tag) . "\n")

}
[7 - More PHP 40

Regex Summary

* Match Email -
http://www.regular-expressions.info/email.html

* Form example enter email — do again form processing
* Password File
* Trim whitespaces leading and following

* String Manipulation

7 - More PHP 41

* Lets modify the initial example using a regular expression
* We only list files with the extension . php

<?php
$handle = opendir ('Stuff');
if ($handle) {
while (false !== ($file = readdir ($handle))) {
if (preg_match("/\w+(.php) /", $file)){
print "$file
";
}
} File Edit View > | &
closedir ($handle) ; adaress [E—] B Bo | Links
} Google -[
2> P s

advanced_cale.php
cale.phi
cale_form. php

[=]
MSc Internet Computing - PHP | "2 Local intranst M

Regex for a British Postcode ?

A([A-PR-UWYZ0-9][A-HK-Y0-9]
[AEHMNPRTVXYO0-9]?
[ABEHMNPRVWXYO0-9]? {1,2}[0-9]
[ABD-HJLN-UW-Z]{2}|GIR 0AA)$

Look at the discussion:
http://www.regxlib.com/REDetails.aspx ?regexp_id=260

MSc Internet Computing - PHP 43

* Hudson Paul (2005): PHP in a Nutshell, O'Reilly, QA
76.73.P224.H3 (most examples taken from there)

* Lerdorf Rasmus and Tatroe Kevin (2002): Programming
PHP, O'Reilly, QA 76.73.P224.L3

* Watt Andrew, Beginning Regular Expressions, Wrox 2005,
QA76.9.T48.W2

* http://php.net
* http://www.regular-expressions.info/

http://nadeausoftware.com/articles/2007/06/php_tip_how_get_web_page_using_curl

http://www.catswhocode.com/blog/15-php-regular-expressions-for-web-developers

7 - More PHP 44

