

7 - Introduction to PHP 1

CM0133 Internet Computing

Introduction to PHP

7 - Introduction to PHP 2

Introduction to PHP
� So far we have seen HTML and CSS

� These are enough to create web pages

� However:

� How can we develop more complex web based applications?

� How do we process vast amounts of web based data?

� If you are a business on the internet, how do you deal with thousands of
financial transactions?

� How do you store the results of financial transactions?

� Where and how do you process these transactions?

� We need a programming language that performs well on the
server !

7 - Introduction to PHP 3

Introduction to PHP
� One server sided programming language is PHP

� PHP is an acronym for PHP Hypertext Processor (note this is a recursive
acronym)

� PHP is a free open-source technology supported by a large community of
users. Open source:

� Provides developers with access to software�s source code

� Means free redistribution rights.

� Better bugless code

� PHP is platform independent: implementations exist for UNIX,LINUX,
Windows, OSX

� PHP supports a large number of database systems, e.g. MySQL and
Oracle

� PHP scripts can use many network protocols, e.g. IMAP, NNTP, SMTP,
POP3 and HTTP

7 - Introduction to PHP 4

Introduction to PHP?

� PHP is a scripting language, where scripts run on a web-server as

opposed to on the client (e.g JavaScript runs in the browser)

� PHP is web-specific � which can make it more popular than

languages such as Perl (although perhaps not as powerful)

� PHP code is typically embedded into a web page, i.e. we mix the

PHP code directly with the HTML code (and any JavaScript code

too)

� The resulting document is saved with the extension .php and

uploaded to a server (e.g. put them in project_html directory)

7 - Introduction to PHP 5

Template Systems v CGI
� PHP programming is a non-CGI approach to web-

programming

� CGI is an acronym for Common Gateway Interface

� CGI is a protocol for allowing interaction between a client

browser and a web server

� If your server supports CGI then you can write programs to

run on the server (and interact with the client) in many

different programming languages, e.g. Perl, C++, Java, Visual

Basic

7 - Introduction to PHP 6

Templating Systems v CGI

� Large websites (e.g. BBC) require programmers,

graphical designers, artists and content creators.

� With CGI programming, the script creates the HTML,

e.g. the HTML is embedded in the Perl script

� Who is therefore leading the work?

� The HTML author? The Programmer? The site designer?

� Who does the design? Is it the programmer because they write

the scripts?

� Who decides what scripts are required? Does the page

designer tells the programmer this?

7 - Introduction to PHP 7

Templating Systems v CGI

PHP is an example of a templating system

With templating systems the scripts and HTML are

contained in the same file but separable to the

extent where they can be developed independently

Therefore:

�
 The HTML author writes the page independently from the PHP

author

�
 The HTML author just writes calls to scripts that the PHP

programmer can develop later

7 - Introduction to PHP 8

What can we do with PHP?

� PHP is a fully functional programming language

� Can be used to develop complex systems

� In this course we will look at:

� The basics of the language

� Variables, loops, condition statements, Math, Strings..

� Handling form data

� Executing regular expressions

� File handling

� Sending Email

� Cookies and Sessions

� Interacting with databases

7 - Introduction to PHP 9

A simple PHP script
<html>
 <head>
 <title>Hello world</title>
 </head>
 <body>
 <h1><?php print("Hello world"); ?></h1>
 </body>
<html>

� You can write this using any text editor

� Save it with the extension .php

� Place the file on a server which can run php

� In our department you can place your files anywhere in your public web

space or anywhere in your public_html directory

BSc Internet Computing - JavaScript 1 10

How it works

� PHP is installed on web server

� Our web server is Apache (just an FYI)

� Server parses files based on extensions (.php)

� Returns plain HTML, no code

7 - Introduction to PHP 11

A Simple PHP Script
<html>
 <head>
 <title>Hello world</title>
 </head>
 <body>
 <h1><?php print("Hello world"); ?></h1>
 </body>
<html>

The PHP code here is contained within special HTML tags:

<?php ... ?>

The print command is used to produce an output

HTML can also be contained within the print command:

print(�<h1> Hello World </h1>�);

You can also use echo instead of print

7 - Introduction to PHP 12

Including PHP in a web page

There are actually 4 ways of including PHP in a web page

1) <?php print("Hello world"); ?>

2) <script language = "php">
 print("Hello world");
 </script>

3) <? print("Hello world"); ?>

4) <% print("Hello world"); %>

� Method (1) is clear and unambiguous (recommended)

� Method (2) is useful in environments supporting mixed

scripting languages in the same HTML file (most do not)

� Methods (3) and (4) depend on the server configuration

7 - Introduction to PHP 13

PHP information

� To obtain information about the PHP installation (on the

web server), create a file called info.php containing

the single line
<?php phpinfo() ?>

7 - Introduction to PHP 14

PHP Basics: Variables

� Like in JavaScript, you don�t have to explicitly assign a

data type to your variables

� The PHP interpreter works out what the type should be

based on what data you put in a variable

� Variables:

� Can contain mixtures of numbers and letters

� Are case-sensitive (e.g. $fred is a different variable to $FRED)

� Cannot start with a digit

� All variables begin with a dollar sign $

7 - Introduction to PHP 15

PHP Basics: Variables

� Numbers are either Integers or floating point

� $positiveInteger = 123;

� $negativeInteger = 65;

� $positiveFloat = 34.3;

� $negativeFloat = -8.547;

� Strings may be contained in single or double quotes

� $singlequoteeg = �This is a string!�;

� $doublequoteeg = �This is also a string!�

� NOTE: If you use double quotes, any PHP variables inside the string are

replaced by their value

� $newstring = �Hello there. $singlequoteeg�;

7 - Introduction to PHP 16

PHP Basics: Variables

<html>

<head></head>

<body>

<?php

$start = "Hello ";

$end = "There";

$both = $start . $end;

print("<p>Result of string concatenation</p>");

print("<p>is : " . $both . "</p>");

// Can also display result this way

print("<p>is : $both </p>");

?>

</body>

</html>

To display variable values they may be placed in double quotes as part

of string or using a concatenation operator (which is a dot �.�)

- Also note the use of comments with //

7 - Introduction to PHP 17

Common Operators (PHP)

+ Adds numbers/Concatenates strings

- Subtracts numbers/Reverses sign

* Multiplies numbers

/ Divides numbers

% Modulus division (returns remainder from division)

! Logical NOT

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== True if both operands are equal

!= True if both operands not equal

&& Logical AND

|| Logical OR

Note that the ones

shown are identical to

those in JavaScript and

Perl

7 - Introduction to PHP 18

PHP Basics: Arrays
� Arrays are handled in exactly the same way as JavaScript

� Array indices begin at zero, arrays begin with dollar sign $

<html>
<head></head>
<body>
<?php

$array[0] = "Apple";
$array[1] = "Orange";
/*
*Display the array in a list
*/
print("");
print(" $array[0] ");
print(" $array[1] ");
print("");
?>
</body>
</html>

Note the combination of HTML

and PHP variables

Note the alternate approach

to including comments � this

Comment spans multiple lines

7 - Introduction to PHP 19

PHP Basics: Associative Arrays
� In an associative array each value is indexed using a unique name

(a unique string) rather than a number
<?php

// I might normally do this:
$normalArray[0] = "Monday";
$normalArray[1] = "Tuesday";

//But im using an associative array now..
$associativeArray["first_day"] = "Monday";
$associativeArray["second_day"] = "Tuesday";

print("");
print("". $associativeArray["first_day"]);
print("". $associativeArray["second_day"]);
print("");
?>

7 - Introduction to PHP 20

PHP Basics: Associative Arrays

� We can use a foreach to loop over associative arrays

<?php
$associativeArray["first_day"] = "Monday";
$associativeArray["second_day"] = "Tuesday";

print("");
foreach($associativeArray as $key => $val) {
 print("$key -- $val");
}
print("");
?>

7 - Introduction to PHP 21

PHP Basics: for loops
� for loops use same structure as in JavaScript, Java and Perl:

for(initialise counter; test condition; increment) {
do something;

}

<?php
for($i=0; $i < 100; $i++){
$myArray[$i] = $i+1;
print("Array index $i has been ");
print("assigned value $myArray[$i]");
print("
");
}
?>

7 - Introduction to PHP 22

PHP Basics: while loops

� Again, same structure as Java, JavaScript, Perl�

while (condition is true) {do something }

<?php
$i=0;
while($i<100){
$myArray[$i] = $i+1;
print("Array index $i has been ");
print("assigned value $myArray[$i]");
print("
");
++$i;
}
?>

7 - Introduction to PHP 23

PHP Basics: Condition Statements

� There are some minor differences to JavaScript (e.g.

spacing of elseif in JavaScript is else if)

<?php

if($age>16){
print("Your over 16");

}elseif($age>18){
print("Your over 18");

}else{
print("Your 16 or under..");

}

?>

7 - Introduction to PHP 24

PHP Basics: Functions

� You can define functions wherever you like - structure is the same as

JavaScript
<head>
<?php
function sayHi(){
print("Hi There!
");
}
?>
</head>
<body>
<?php
print("Im going to show some messages
");
sayHi();
sayGoodBye();
function sayGoodBye(){
print("Goodbye!
");
}
?>
</body>

7 - Introduction to PHP 25

PHP Basics: Scoping
<html>
<head>
<?php
$age = 18;$name = �Bob�;
function showStuff($name){
global $age;
print("
You are $age");
print("
You are $name");
}
?>
</head>
<body>
<?php
print("
You are $age");
showStuff($name);
?>
</body>
</html>

You can use variables defined outside

functions anywhere in the

program. e.g. $age is used in the

top fragment and bottom fragment.

If you want to use a variable declared

outside a function within a

function you can pass it as an

argument to that function or write

global before it inside the function

E.g. $name is passed as an

argument to showStuff.

$age can be used inside showStuff
because I�ve written global $age;

7 - Introduction to PHP 26

Selected Math Functions
� cos(float), sin(float), tan(float), deg2rad(float)

� abs(number), floor(float), ceil(float),
round(float)

� max(arg1, arg2[, argn]), min(arg1, arg2[, argn])

<?php
$a = 5;
$b = 10.3;
$c = 15;

print("cos(5)=".cos($a));
$b = floor($b);
print("
floor(10.3)=".$b);
$maximum = max($a,$b,$c);
print("
max(5,10,15)=".$maximum);
?>

7 - Introduction to PHP 27

Processing Form Data

� When studying HTML forms and JavaScript we took some

user input and processed it on the client side

� That is, the browser ran the JavaScript code to process the

form data and display some feedback

� This is fine for:

� Running simple programs from form data (e.g. calculators�)

� Checking that forms have correctly been filled in

� However, JavaScript is not suitable for heavy processing,

database access, handling financial transactions,

remembering user details, site security..

� PHP is powerful enough to be well suited to all these tasks

7 - Introduction to PHP 28

Processing Form Data

� Recap: We may use JavaScript to initially check all form

fields are filled in before sending data to the server.

 <form name="myForm" method="POST" action="processForm.php"
onSubmit="return verifyForm()">
 Name: <input type="text" name="username">

 Address:<input type="text" name="address">

 <input type="submit" value="Send">
 </form>

� In this example � when submit is pressed - if the JavaScript function verifyForm() returns true, then

the form data will be sent to processForm.php � i.e. the page defined in the action attribute of the form

� We can actually send the data to any PHP program we like

7 - Introduction to PHP 29

Processing Form Data

� In this example the data is sent to processForm.php

� Whenever we send form data in PHP (v4.1 and above) it

gets stored in a PHP global array called: $_POST or $_GET

� The data will be stored in one of these depending on how

you send the form data, i.e. whether or not you set method
= �POST� or method = �GET� in the form

� PHP has other global arrays we can use.

� We will look at $_COOKIE and $_SESSION later on..

7 - Introduction to PHP 30

Reading $_POST or $_GET
� It is very simple to access $_POST or $_GET and retrieve the form data.

� This is what processForm.php might look like:

<?php

// Extract the form data from $_POST
extract($_POST);

//We now have two variables:
//$username and $address
//We can use these as we like..

print("Username: $username");
print("
Address: $address");

?>

These variable names

Depend on the names given

to inputs in the form:

e.g. the first text field

had name = �username�

7 - Introduction to PHP 31

<body>

<form method="POST" action="display.php�>

<h1>Please fill in all fields:</h1> Title:

 <select name = "title">

<option selected>Mr

<option>Mrs

<option>Miss

</select>

Age: <input type = "text" name = "age" size=3>

 First Name: <input type = "text" name = "first">

*

 Last Name: <input type = "text" name = "second">

*

* Indicates a required field

<input type="submit" value="Send">

</form>

</body>

</html>

The_Form.html

7 - Introduction to PHP 32

The_Form.html
� The form uses a JavaScript

function to check that first/last
name fields are filled in

� If they are then form data is sent
to display.php

� The names given to form inputs
are: first, second,
title, age

� Note how display.php mixes
PHP fragments and HTML

7 - Introduction to PHP 33

display.php
<?php extract($_POST); ?>

<table width = 250 border=1 bgcolor="yellow">

<tr>

<th width = "25%">Title:

<td width = "75%"><?php print($title) ?>

</tr><tr>

<th>Forename:

<td><?php print($first) ?>

</tr><tr>

<th>Surname:

<td><?php print($second) ?>

</tr><tr>

<th>Age:

<td><?php print($age) ?>

</tr>

</table>

<?php

if($first==�Billy"){

print("
Hello $title. $second");

}

?>

7 - Introduction to PHP 34

Simple PHP Calculator � the form
<form method="POST" action="calc.php">

<input type="text" name="num1" size=1>

<select name = "operation">

<option>+

<option>-

</select>

<input type="text" name="num2" size=1>

<input type="submit" value = "=">

</form>

7 - Introduction to PHP 35

Simple PHP Calculator � calc.php

<?php

extract($_POST);

if($operation=="+"){

$answer = $num1 + $num2;

}else{

$answer = $num1 - $num2;

}

?>

<h1>The answer is: <?php print($answer) ?> </h1>

7 - Introduction to PHP 36

Self Referencing

� We don�t have to send Form data to a new PHP program

� You can have the action of the form self-reference the page

that created the form

� Keeps all form processing in one page

� Good if PHP scripts are small

� Good if not too many PHP fragments in one page

� The advanced calculator sends the form variables back to its

self � its much neater than the last version

� We set action="<?php $_SERVER['PHP_SELF'] ?>">

to self reference the page

7 - Introduction to PHP 37

<?php extract($_POST);

if($operation=="+"){

$answer = $n1 + $n2;

}else{

$answer = $n1 - $n2;

}

?>

<form method="POST" action="<?php $_SERVER['PHP_SELF'] ?>">

<input type="text" name="n1" size=1 value="<?php print($n1); ?>">

<select name = "operation">

<option>+

<option>-

</select>

<input type="text" name="n2" size=1 value="<?php print($n2); ?>">

<input type="submit" value = "=">

<?php print($answer); ?>

</form>

Advanced Calculator

7 - Introduction to PHP 38

Mixing HTML and PHP

� You can mix PHP and HTML to make you pages more

dynamic

� In the following example the web pages body colour is

determined by the value of the PHP string $colour

� You can set any HTML attribute values you like in this way:

hyperlinks, image sources, table sizes etc

7 - Introduction to PHP 39

Mixing HTML and PHP

<?php

extract($_POST);

?>

<body bgcolor=<?php print($colour) ?>>

<form action = "<?php $_SERVER['PHP_SELF']; ?>" method="POST">

Enter a colour:

<input type="text" name="colour">

<input type = "submit">

</form>

</body>

Note the inclusion of the php
fragment as a value for the
HTML attribute

7 - Introduction to PHP 40

File Handling with PHP

� At some point you will want to store or access some

permanent data regarding your website/site users

� You could do this by incorporating a database

� However, databases are designed to store large

volumes of data

� If you have a low-volume site, then using simple files can

be a better alternative

� In the long run, files are not as powerful or flexible as

databases. However they are simple and quick to use.

7 - Introduction to PHP 41

Reading files: file_get_contents()

� Note there are several methods to read and write files in PHP: we will only

look at one

� To read files we can use file_get_contents()

� Reads file contents into a string, e.g:

<?php
$filename = "stuff.txt";
$contents = file_get_contents($filename);
print $contents;
?>

7 - Introduction to PHP 42

Reading files: file_get_contents()

� We can also read file contents into an array

� \n is a new line character (it represents a

line break in a text file)

� The array is formed using the line breaks

<?php
 $filename = "stuff.txt";
 $contents = file_get_contents($filename);
 $filearray = explode("\n", $contents);
 $array_length = sizeof($filearray);

 for($i=0;$i<$array_length;$i++){
print "LINE $i IS: $filearray[$i]
";

 }
?>

7 - Introduction to PHP 43

Writing files: file_put_contents()
� The following code writes the array $my_array

to the text file the_file.txt

� implode() makes each entry in the array a
new line in the output file

� implode() adds line breaks at the end of each

line

<?php
 $filename = "the_file.txt";
 $my_array[0] = "THIS IS LINE ONE";
 $my_array[1] = "THIS IS LINE TWO";
 $my_array[2] = "THIS IS LINE THREE";
 $mystring = implode("\n", $my_array);
 $numbytes = file_put_contents($filename, $mystring);
 if($numbytes){
 print("$numbytes bytes written.");
 }else{
 print("Error writing file.");
 }
?>

7 - Introduction to PHP 44

Writing files: file_put_contents()
� We can also append files, i.e. we can

add to existing files

� We can simply include the argument

FILE_APPEND

<?php
 $filename = "the_file.txt";
 $my_array[0] = �\nTHIS IS LINE FOUR";
 $my_array[1] = "THIS IS LINE FIVE";
 $mystring = implode("\n", $my_array);
 $numbytes = file_put_contents($filename,$mystring,FILE_APPEND);
 if($numbytes){
 print("$numbytes bytes written.");
 }else{
 print("Error writing file.");
 }
?>

Ensures writing begins on a new line

7 - Introduction to PHP 45

Reading Directory Contents

� The logical progression to working with files is working

with directories � this is very straightforward

� The following program takes a directory name as a string

(relative or absolute) and lists each file in the directory

� The three main functions are opendir(), readdir()
and closedir()

� The directory name being read is called Stuff

� On each iteration, the name of the current file is stored in

the string $file_name

7 - Introduction to PHP 46

Reading Directory Contents
� opendir() returns a handle to the directory which we store in the

variable $handle � we use this to reference the directory for later

use

� readdir() takes the directory handle as an argument

� Each time readdir($handle) is called it returns the next file in

the directory

while (false !== ($file = readdir($handle)))

� This line says: while readdir($handle) is still returning files,
execute the code contained in the block

� !== means �not equal and not the same type as�

� We use this in case ($file = readdir($handle)) is false, i.e.

it is possible that the filename itself may evaluate to false!

� closedir() just closes the directory connection and cleans up

7 - Introduction to PHP 47

Reading Directory Contents

<?php

 $handle = opendir('Stuff');

 if($handle) {

 while(false !== ($file = readdir($handle))){

print "$file
";

}

closedir($handle);

 }

?>

Note that we may want
to list only certain file
types � we also may want to
Remove the �dots�..

7 - Introduction to PHP 48

More to come ...

� String Manipulation

� Regular Expressions

� Mail

� Object Oriented PHP

� Databases

� State Management � Cookies & Sessions

� Parsing � XML

� AJAX & PHP

7 - Introduction to PHP 49

Literature

� http://www.php.net

� http://library.cf.ac.uk - search for PHP - programming

� http://www.adaptivepath.com/ideas/essays/archives/000385.php

